Color patterns in fish are often multicomponent signals, composed of pigment-based and structural color patches that can be used to communicate within species, in both inter- and intrasexual interactions, and between species. In this review, we discuss some of the roles played by pigment-based elements of color pattern. We begin by discussing general forms of coloration, classifying them by appearance (e.g., cryptic vs. conspicuous) and apparent function (e.g., conspicuous coloration and mating displays, stripes and cooperation, and bars and aggression). We then briefly discuss the roles pigments play in the perception of these color patterns via their presence in the eye. In the last section, we look at the relative importance of carotenoid versus melanic coloration in situations where honest signals to potential rivals and potential mates might be required. In this survey, we have highlighted some recent research, especially studies that consider both the physiological and behavioral processes underlying the evolution and expression of pigment-based color patterns in fish. The nature of pigmented color patterns depends not just on the dynamics of pattern development and physiological regulation, but also on the behavioral roles played by these patterns, both now and in the past. As such, advances in particular fields of study on pigment patterns (physiology, developmental biology, behavioral ecology, evolutionary biology, etc.) will increasingly depend on insights from other fields.
Maximum likelihood codon substitution models have proven useful for studying when and how protein function evolves, but they have recently been criticized on a number of fronts. The strengths and weaknesses of such methods must therefore be identified and improved upon. Here, using simulations, we show that the Clade model C versus M1a test for functional divergence among clades is prone to false positives under simple evolutionary conditions. We then propose a new null model (M2a_rel) that better accounts for among-site variation in selective constraint. We show that the revised test has an improved false-positive rate and good power. Applying this test to previously analyzed data sets of primate ribonucleases and mammalian rhodopsins reveals that some conclusions may have been misled by the original method. The improved test should prove useful for identifying patterns of divergence in selective constraint among paralogous gene families and among orthologs from ecologically divergent species.
Theory predicts that the sexes can achieve greater fitness if loci with sexually antagonistic polymorphisms become linked to the sex determining loci, and this can favour the spread of reduced recombination around sex determining regions. Given that sex-linked regions are frequently repetitive and highly heterozygous, few complete Y chromosome assemblies are available to test these ideas. The guppy system (Poecilia reticulata) has long been invoked as an example of sex chromosome formation resulting from sexual conflict. Early genetics studies revealed that male colour patterning genes are mostly but not entirely Y-linked, and that X-linkage may be most common in low predation populations. More recent population genomic studies of guppies have reached varying conclusions about the size and placement of the Y-linked region. However, this previous work used a reference genome assembled from short-read sequences from a female guppy. Here, we present a new guppy reference genome assembly from a male, using long-read PacBio single-molecule real-time sequencing (SMRT) and chromosome contact information. Our new assembly sequences across repeat- and GC-rich regions and thus closes gaps and corrects mis-assemblies found in the short-read female-derived guppy genome. Using this improved reference genome, we then employed broad population sampling to detect sex differences across the genome. We identified two small regions that showed consistent male-specific signals. Moreover, our results help reconcile the contradictory conclusions put forth by past population genomic studies of the guppy sex chromosome. Our results are consistent with a small Y-specific region and rare recombination in male guppies.
BackgroundNext-generation sequencing is providing researchers with a relatively fast and affordable option for developing genomic resources for organisms that are not among the traditional genetic models. Here we present a de novo assembly of the guppy (Poecilia reticulata) transcriptome using 454 sequence reads, and we evaluate potential uses of this transcriptome, including detection of sex-specific transcripts and deployment as a reference for gene expression analysis in guppies and a related species. Guppies have been model organisms in ecology, evolutionary biology, and animal behaviour for over 100 years. An annotated transcriptome and other genomic tools will facilitate understanding the genetic and molecular bases of adaptation and variation in a vertebrate species with a uniquely well known natural history.ResultsWe generated approximately 336 Mbp of mRNA sequence data from male brain, male body, female brain, and female body. The resulting 1,162,670 reads assembled into 54,921 contigs, creating a reference transcriptome for the guppy with an average read depth of 28×. We annotated nearly 40% of this reference transcriptome by searching protein and gene ontology databases. Using this annotated transcriptome database, we identified candidate genes of interest to the guppy research community, putative single nucleotide polymorphisms (SNPs), and male-specific expressed genes. We also showed that our reference transcriptome can be used for RNA-sequencing-based analysis of differential gene expression. We identified transcripts that, in juveniles, are regulated differently in the presence and absence of an important predator, Rivulus hartii, including two genes implicated in stress response. For each sample in the RNA-seq study, >50% of high-quality reads mapped to unique sequences in the reference database with high confidence. In addition, we evaluated the use of the guppy reference transcriptome for gene expression analyses in a congeneric species, the sailfin molly (Poecilia latipinna). Over 40% of reads from the sailfin molly sample aligned to the guppy transcriptome.ConclusionsWe show that next-generation sequencing provided a reliable and broad reference transcriptome. This resource allowed us to identify candidate gene variants, SNPs in coding regions, and sex-specific gene expression, and permitted quantitative analysis of differential gene expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.