The ligand 6,6'-dihydroxy terpyridine (dhtp) is presented as a bifunctional ligand capable of directing proton transfer events with metal-coordinated substrates. Solid-state analysis of a Ru(II)-dhtp complex reveals directed hydrogen-bonding interactions of the hydroxyl groups of dhtp with a Ru-bound chloride ligand. The utility of dhtp was demonstrated by chemoselective transfer hydrogenation of ketones.
Remarkable differences in selectivity and activity for ruthenium-catalyzed transfer hydrogenation are described that are imparted by pendent OH groups. Kinetic experiments, as well as the study of control complexes devoid of OH groups, reveal that the pendent OH groups serve to orient the ketone substrate through ion pairing with an alkali metal under basic conditions. The deprotonation of the OH groups was found to modulate the electronics at the metal center, providing a more electron rich ruthenium center. The effects of the ion pairing between alkali metals and the pendent alkoxide groups were highlighted by demonstrating chemoselective transfer hydrogenation of ketones in the presence of olefins. The results illustrate that a simple ligand modification (installation of OH groups) imparts dramatic changes to catalysis. Pendent OH groups turn on catalysis through electronic perturbations at the metal site under basic conditions and can also change the mechanism of catalysis, the latter of which can be used to promote chemoselective reductions.
Interest in developing renewable fuels is continuing to grow and biomass represents a viable source of renewable carbon with which to replace fossil-based components in transportation fuels. During our own work, we noticed that chemists think in terms of functional groups whereas fuel engineers think in terms of physical fuel properties. In this Concept article, we discuss the effect of carbon and oxygen functional groups on potential fuel properties. This serves as a way of informing our own thinking and provides us with a basis with which to design and synthesize molecules from biomass that could provide useful transportation fuels.
A copper complex featuring a proton-responsive tripodal ligand reduces nitrite via a proton/electron transfer process, which parallels copper nitrite reductase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.