In this paper, a bioinspired, compact, cost-effective autonomous underwater vehicle system is presented. Designed to operate in a heterogeneous, multivehicle collaboration hierarchy, the presented vehicle design features 3D printing technology to enable fast fabrication with a complex internal structure. Similar to a previous vehicle prototype, this system generates propulsive forces by expelling unsteady, pulsed jets, inspired by the locomotion of cephalopods and jellyfish. The novel thrusters enable the vehicle to be fully actuated in horizontal plane motions, without sacrificing the low-forward-drag, slender vehicle profile. By successively ingesting water and expelling finite water jets, periodic actuation forces are generated at all possible vehicle velocities, eliminating the need for control surfaces used in many conventional underwater vehicle designs. A semiactive buoyancy control system, inspired by the nautilus, adjusts the vehicle depth by passively allowing water flowing into and actively expelling water out of an internal bladder. A compact embedded system is developed to achieve the control and sensing capabilities necessary for multiagent interactions with the minimum required processing power and at a low energy cost. The new vehicle design also showcases an underwater optical communication system for short-range, high-speed data transmission, supplementing the conventional acoustic communication system. Experimental results show that, with the thruster motors powered at a 60% duty-cycle, the new vehicle is able to achieve a 1/4 zero-radius turn in 3.5 s and one-body-width sway translation in 2.5 s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.