In this thesis we explore using the D-Wave Advantage 4.1 quantum annealer to sample from quantum Boltzmann distributions and train quantum Boltzmann machines (QBMs). We focus on the real-world problem of using QBMs as generative models to produce synthetic foreign exchange market data and analyze how the results stack up against classical models based on restricted Boltzmann machines (RBMs). Additionally, we study a small 12-qubit problem which we use to compare samples obtained from the Advantage 4.1 with theory, and in the process gain vital insights into how well the Advantage 4.1 can sample quantum Boltzmann random variables and be used to train QBMs. Through this, we are able to show that the Advantage 4.1 can sample classical Boltzmann random variables to some extent, but is limited in its ability to sample from quantum Boltzmann distributions. Our findings indicate that QBMs trained using the Advantage 4.1 are much noisier than those trained using simulations and struggle to perform at the same level as classical RBMs. However, there is the potential for QBMs to outperform classical RBMs if future generation annealers can generate samples closer to the desired theoretical distributions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.