The Magnetized Plasma Interaction Experiment (MAGPIE) is a versatile helicon source plasma device operating in a magnetic hill configuration designed to support a broad range of research activity and is the first stage of the Materials Diagnostic Facility at the Australian National University. Various material targets can be introduced to study a range of plasma-material interaction phenomena.Initially, with up to 2.1 kW of RF at 13.56 MHz, argon (10 18 -10 19 m −3 ) and hydrogen (up to 10 19 m −3 at 20 kW) plasma with electron temperature ∼3-5 eV was produced in magnetic fields up to ∼0.19 T. For high mirror ratio we observe the formation of a bright blue core in argon above a threshold RF power of 0.8 kW. Magnetic probe measurements show a clear m = +1 wave field, with wavelength smaller than or comparable to the antenna length above and below this threshold, respectively. Spectroscopic studies indicate ion temperatures <1 eV, azimuthal flow speeds of ∼1 km s −1 and axial flow near the ion sound speed.
A bifurcative step transition from low-density, high-temperature, attached divertor conditions to high-density, low-temperature, detached divertor conditions is experimentally observed in DIII-D tokamak plasmas as density is increased. The step transition is only observed in the high confinement mode and only when the B×∇B drift is directed towards the divertor. This work reports for the first time a theoretical explanation and numerical simulations that qualitatively reproduce this bifurcation and its dependence on the toroidal field direction. According to the model, the bifurcation is primarily driven by the interdependence of the E×B-drift fluxes, divertor electric potential structure, and divertor conditions. In the attached conditions, strong potential gradients in the low field side (LFS) divertor drive E×B-drift flux towards the high field side divertor, reinforcing low density, high temperature conditions in the LFS divertor leg. At the onset of detachment, reduction in the potential gradients in the LFS divertor leg reduce the E×B-drift flux as well, such that the divertor plasma evolves nonlinearly to high density, strongly detached conditions. Experimental estimates of the E×B-drift fluxes, based on divertor Thomson scattering measurements, and their dependence on the divertor conditions are qualitatively consistent with the numerical predictions. The implications for divertor power exhaust and detachment control in the next step fusion devices are discussed.
A new small angle slot (SAS) divertor concept has been developed to enhance neutral cooling across the divertor target by coupling a closed slot structure with appropriate target shaping. Initial tests on DIII-D find a strong interplay between such anticipated ‘SAS’ effects and cross-field drifts, favouring operation with the ion B × ∇B drift away from the X-point, as currently employed for advanced tokamaks. This offers the following key improvements relative to DIII-D’s open lower divertor or partially-closed upper divertor: (i) SAS allows for transition to low temperature moderately detached divertor conditions with Te ≲ 10 eV at very low main plasma densities, lower than are usually attainable at all in DIII-D high confinement (H-mode) plasmas as used in these tests; (ii) Pedestal performance and core confinement are significantly improved with SAS. The final confinement collapse associated with the onset of X-point MARFE (multifaceted asymmetric radiation from the edge) following deep detachment occurs at significantly higher pedestal densities, thus widening the window of H-mode operation compatible with a dissipative divertor. For operation with the ion B × ∇B drift toward the X-point, the divertor plasma transitions to a bifurcative detached state at much higher densities, similar to other divertor configurations in DIII-D. These results highlight the strong interplay between divertor closure and drifts, and point to an interesting divertor optimization path to explore that offers potential for future fusion reactors.
Low-pressure hydrogen plasmas have found applications in a variety of technology areas including fusion, neutral beam injection and material processing applications. To better understand these discharges, a global model is developed to predict the behaviour of electrons, ground-state atomic and molecular hydrogen, three positive ion species (H + , H 2 + , and H 3 + ), a single negative ion species (H − ), and fourteen vibrationally excited states of molecular hydrogen (H 1 2 (υ = -14)). The model is validated by comparison with experimental results from a planar inductively coupled GEC reference cell and subsequently applied to the MAGPIE linear helicon reactor.The MAGPIE reactor is investigated for a range of pressures from 1 to 100 mTorr and powers up to 5 kW. With increasing power between 50 W and 5 kW at 10 mTorr the density of all charged species increases as well as the dissociative fraction while the electron temperature remains almost constant at around 3 eV. For gas pressures from 1-100 mTorr at an input power of 1 kW, the electron density remains almost constant, the electron temperature and dissociative fraction decreases, while H 3 + density increases in density and also dominates amongst ion species. Across these power and pressure scans, electronegativity remains approximately constant at around 2.5%. The power and pressure determines the dominant ion species in the plasma with H 3 + observed to dominate at high pressures and low powers whereas H + tends to be dominant at low pressures and high powers.A sensitivity analysis is used to demonstrate how experimental parameters (power, pressure, reactor wall material, geometry etc) influence individual species' density as well as the electron temperature. Physical reactor changes including the length, radius and wall recombination coefficient are found to have the largest influence on outputs obtained from the model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.