Genome-wide association studies (GWAS) have identified several risk
variants for late-onset Alzheimer's disease (LOAD)1,2. These
common variants have replicable but small effects on LOAD risk and generally do
not have obvious functional effects. Low-frequency coding variants, not detected
by GWAS, are predicted to include functional variants with larger effects on
risk. To identify low frequency coding variants with large effects on LOAD risk,
we performed whole exome-sequencing (WES) in 14 large LOAD families and
follow-up analyses of the candidate variants in several large case-control
datasets. A rare variant in PLD3 (phospholipase-D family,
member 3, rs145999145; V232M) segregated with disease status in two independent
families and doubled risk for AD in seven independent case-control series (V232M
meta-analysis; OR= 2.10, CI=1.47-2.99; p= 2.93×10-5, 11,354
cases and controls of European-descent). Gene-based burden analyses in 4,387
cases and controls of European-descent and 302 African American cases and
controls, with complete sequence data for PLD3, indicate that
several variants in this gene increase risk for AD in both populations (EA: OR=
2.75, CI=2.05-3.68; p=1.44×10-11, AA: OR= 5.48, CI=1.77-16.92;
p=1.40×10-3). PLD3 is highly expressed in
brain regions vulnerable to AD pathology, including hippocampus and cortex, and
is expressed at lower levels in neurons from AD brains compared to control
brains (p=8.10×10-10). Over-expression of PLD3 leads to a
significant decrease in intracellular APP and extracellular Aβ42 and
Aβ40, while knock-down of PLD3 leads to a significant increase in
extracellular Aβ42 and Aβ40. Together, our genetic and functional
data indicate that carriers of PLD3 coding variants have a
two-fold increased risk for LOAD and that PLD3 influences APP
processing. This study provides an example of how densely affected families may
be used to identify rare variants with large effects on risk for disease or
other complex traits.
Recent studies have identified the R47H variant in TREM2 as an Alzheimer’s disease (AD) risk factor with estimated odds ratio ranging from 2.9–5.1. The Cache County Memory Study is a large, population-based sample designed for the study of memory and aging. We genotyped rs75932628 (R47H) in 2974 samples (427 cases and 2540 controls) from the Cache County study using a custom Taqman Assay. We observed 7 heterozygous cases and 12 heterozygous controls with an odds ratio of 3.5 (95% confidence interval, 1.3–8.8; p = 0.0076). The minor allele frequency and population attributable fraction for R47H were 0.0029 and 0.004, respectively. This study replicates the association between R47H and AD risk in a large, population-based sample and estimates the population frequency and attributable risk of this rare variant.
Cholesterol has been implicated in the pathogenesis of Late-onset Alzheimer's disease (LOAD) and the Cholesteryl Ester Transfer Protein (CETP) is critical to cholesterol regulation within the cell, making CETP an Alzheimer’s disease candidate gene. Several studies have suggested that CETP I405V (rs5882) is associated with cognitive function and LOAD risk, but findings vary and most studies have been conducted using relatively small numbers of samples. To test whether this variant is involved in cognitive function and LOAD progression, we genotyped 4486 subjects with up to twelve years of longitudinal cognitive assessment. Analyses revealed an average 0.6-point decrease per year in the rate of cognitive decline for each additional valine (p < 0.011). We failed to detect association between CETP I405V and LOAD status (p < 0.28). We conclude that CETP I405V is associated with preserved cognition over time but is not associated with LOAD status.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.