Context Physiologic changes in glucose metabolism are well-described to occur during puberty. However, there are important gaps in understanding the interaction between obesity and the normal physiologic changes during puberty, as well as how these changes could contribute to the increased risk of comorbidities, such as type 2 diabetes and dyslipidemia, in youth with obesity. Objective The objective of this study was to compare longitudinal changes in insulin sensitivity (Si) and secretion during pubertal progression in youth with obesity versus those with normal weight. Design Longitudinal observational study evaluating youth from early puberty (Tanner [T]2-T3) until puberty completion (T5). Setting Pediatric academic hospital Clinical Translational Research Center. Participants Pubertal youth with normal weight (n = 47; 22 female, 25 male) and obesity (n = 37; 23 female, 14 male) Main Outcome Measures Si, insulin response (acute insulin response to glucose, AIRg) and disposition index (DI) by intravenous glucose tolerance test at baseline (T2-T3), T4, and T5 Results Youth with obesity had significantly lower Si and higher AIRg at each time point (P < 0.001), but DI was similar between the groups. There were no group differences in trajectory of Si, AIRg or DI over time. Leptin, insulin-like growth factor-1, and obesity were most strongly associated with Si and AIRg at all time points. Conclusions Obesity significantly impacts Si during puberty, even at the earliest stages. However, in general, obese youth have adequate β-cell compensation for the significantly reduced Si of puberty. Future studies are needed to better predict the subset of youth who fail to maintain β-cell compensation during puberty.
Background Prediction models for time-to-event outcomes are commonly used in biomedical research to obtain subject-specific probabilities that aid in making important clinical care decisions. There are several regression and machine learning methods for building these models that have been designed or modified to account for the censoring that occurs in time-to-event data. Discrete-time survival models, which have often been overlooked in the literature, provide an alternative approach for predictive modeling in the presence of censoring with limited loss in predictive accuracy. These models can take advantage of the range of nonparametric machine learning classification algorithms and their available software to predict survival outcomes. Methods Discrete-time survival models are applied to a person-period data set to predict the hazard of experiencing the failure event in pre-specified time intervals. This framework allows for any binary classification method to be applied to predict these conditional survival probabilities. Using time-dependent performance metrics that account for censoring, we compare the predictions from parametric and machine learning classification approaches applied within the discrete time-to-event framework to those from continuous-time survival prediction models. We outline the process for training and validating discrete-time prediction models, and demonstrate its application using the open-source R statistical programming environment. Results Using publicly available data sets, we show that some discrete-time prediction models achieve better prediction performance than the continuous-time Cox proportional hazards model. Random survival forests, a machine learning algorithm adapted to survival data, also had improved performance compared to the Cox model, but was sometimes outperformed by the discrete-time approaches. In comparing the binary classification methods in the discrete time-to-event framework, the relative performance of the different methods varied depending on the data set. Conclusions We present a guide for developing survival prediction models using discrete-time methods and assessing their predictive performance with the aim of encouraging their use in medical research settings. These methods can be applied to data sets that have continuous time-to-event outcomes and multiple clinical predictors. They can also be extended to accommodate new binary classification algorithms as they become available. We provide R code for fitting discrete-time survival prediction models in a github repository.
Machine learning (ML) models have been shown to predict the presence of clinical factors from medical imaging with remarkable accuracy. However, these complex models can be difficult to interpret and are often criticized as “black boxes”. Prediction models that provide no insight into how their predictions are obtained are difficult to trust for making important clinical decisions, such as medical diagnoses or treatment. Explainable machine learning (XML) methods, such as Shapley values, have made it possible to explain the behavior of ML algorithms and to identify which predictors contribute most to a prediction. Incorporating XML methods into medical software tools has the potential to increase trust in ML-powered predictions and aid physicians in making medical decisions. Specifically, in the field of medical imaging analysis the most used methods for explaining deep learning-based model predictions are saliency maps that highlight important areas of an image. However, they do not provide a straightforward interpretation of which qualities of an image area are important. Here, we describe a novel pipeline for XML imaging that uses radiomics data and Shapley values as tools to explain outcome predictions from complex prediction models built with medical imaging with well-defined predictors. We present a visualization of XML imaging results in a clinician-focused dashboard that can be generalized to various settings. We demonstrate the use of this workflow for developing and explaining a prediction model using MRI data from glioma patients to predict a genetic mutation.
High-throughput data such as metabolomics, genomics, transcriptomics, and proteomics have become familiar data types within the “-omics” family. For this work, we focus on subsets that interact with one another and represent these “pathways” as graphs. Observed pathways often have disjoint components, i.e., nodes or sets of nodes (metabolites, etc.) not connected to any other within the pathway, which notably lessens testing power. In this paper we propose the Pathway Integrated Regression-based Kernel Association Test (PaIRKAT), a new kernel machine regression method for incorporating known pathway information into the semi-parametric kernel regression framework. This work extends previous kernel machine approaches. This paper also contributes an application of a graph kernel regularization method for overcoming disconnected pathways. By incorporating a regularized or “smoothed” graph into a score test, PaIRKAT can provide more powerful tests for associations between biological pathways and phenotypes of interest and will be helpful in identifying novel pathways for targeted clinical research. We evaluate this method through several simulation studies and an application to real metabolomics data from the COPDGene study. Our simulation studies illustrate the robustness of this method to incorrect and incomplete pathway knowledge, and the real data analysis shows meaningful improvements of testing power in pathways. PaIRKAT was developed for application to metabolomic pathway data, but the techniques are easily generalizable to other data sources with a graph-like structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.