Significance
Biological diversity is the foundation for the maintenance of ecosystems. Consequently it is thought that anthropogenic activities that reduce the diversity in ecosystems threaten ecosystem performance. A large proportion of the biodiversity within terrestrial ecosystems is hidden below ground in soils, and the impact of altering its diversity and composition on the performance of ecosystems is still poorly understood. Using a novel experimental system to alter levels of soil biodiversity and community composition, we found that reductions in the abundance and presence of soil organisms results in the decline of multiple ecosystem functions, including plant diversity and nutrient cycling and retention. This suggests that below-ground biodiversity is a key resource for maintaining the functioning of ecosystems.
The soil microbiome is highly diverse and comprises up to one quarter of Earth’s diversity. Yet, how such a diverse and functionally complex microbiome influences ecosystem functioning remains unclear. Here we manipulated the soil microbiome in experimental grassland ecosystems and observed that microbiome diversity and microbial network complexity positively influenced multiple ecosystem functions related to nutrient cycling (e.g. multifunctionality). Grassland microcosms with poorly developed microbial networks and reduced microbial richness had the lowest multifunctionality due to fewer taxa present that support the same function (redundancy) and lower diversity of taxa that support different functions (reduced functional uniqueness). Moreover, different microbial taxa explained different ecosystem functions pointing to the significance of functional diversity in microbial communities. These findings indicate the importance of microbial interactions within and among fungal and bacterial communities for enhancing ecosystem performance and demonstrate that the extinction of complex ecological associations belowground can impair ecosystem functioning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.