Premise Despite the efforts to understand the processes that shape neotropical biodiversity, the complexity of certain biomes, such as the Atlantic Forest (AF), prevents the generalization of patterns. Initially, ecological niche modeling (ENM), with phylogeographic studies, identified past stable areas in the central and northern portions of the AF, while the southern portion was thought to be highly fragmented. Here, we examined the phylogeography, historical patterns, genetic diversity, and population structure of Vriesea incurvata, an endemic species of the southern portion of the AF. Methods We evaluated 149 individuals using two plastid DNA regions (cpDNA) and 13 nuclear microsatellite markers (nuSSRs) to access the historical patterns, genetic diversity, and structure of V. incurvata populations. We also conducted historical demography and ENM analyses. Results We found moderate to high genetic diversity and low population structure for both genomes. The cpDNA network revealed high haplotype sharing. The ENM suggested no drastic changes in suitable areas for V. incurvata occurrence, corroborating the finding of no phylogeographic structure. Conclusions Contrary to some studies, our results indicate that the southern AF was a historically stable climate region for V. incurvata occupation after southward colonization by the species. Past climatic changes probably did not cause structuring among its populations.
When related species are distributed in sympatric populations, hybridization may occur. Likewise, one or more of these species may have arisen through historical hybridization between taxa. Here, we aim to elucidate the occurrence of hybridization among three Dyckia spp. (Bromeliaceae) from southern Brazil. We used seven nuclear and six plastid microsatellite loci to assess patterns of genetic diversity, population structure and hybridization in the three species. Furthermore, we performed manual crosses between species to test compatibility and fertility. The results showed that Dyckia julianae has an intermediate molecular profile, low gene flow occurs between Dyckia hebdingii and Dyckia choristaminea and higher gene flow occurs between D. julianae and the other two species. Plastid microsatellites identified 12 haplotypes that are shared among the species. The manual crosses between D. julianae and the other two species produced viable seeds, but no crosses between D. hebdingii and D. choristaminea generated fruits. Our data suggest that the reproductive barrier between D. julianae and the other two species is permeable. Further investigation into the hybrid origin hypothesis of D. julianae should be undertaken, as well as the mechanisms involved in reproductive isolation between D. hebdingii and D. choristaminea.
All materials CHN.
The plant communities associated with iron-rich outcrops are still little known about to their genetic structure and diversity. Outcrops are often considered to be ‘terrestrial islands’, and gene flow among populations on different outcrops is presumed to be hampered by the isolation effect provided by the surrounding matrix. Here, we studied the genetic diversity and structure of populations of Dyckia excelsa to test the hypothesis that the disjunction of the ironstone outcrops where this species occurs promotes its highly structured genetic variability. Seven nuclear microsatellite markers and two plastid DNA intergenic spacers (rps16-trnK and rpl32-trnL) were used to characterize individuals from seven locations in the region of Urucum Residual Plateau, Mato Grosso do Sul State, Brazil. These markers low haplotype and allelic diversity and high levels of genetic divergence among outcrops, indicating prolonged genetic isolation, with diversification of haplotypes dating from the Pleistocene (1.0 Mya). Pollen movement may occur between neighbouring populations, resulting in a pattern of isolation-by-distance. For conservation purposes, it is recommended that D. excelsa be preserved in situ in each specific location given the low levels of gene flow and the high degree of genetic uniqueness in each group of populations investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.