Traumatic brain injury (TBI) is a complex condition that presents with a wide spectrum of clinical symptoms caused by an initial insult to the brain through an external mechanical force to the skull. In the United States alone, TBI accounts for more than 50,000 deaths per year and is one of the leading causes of mortality among young adults in the developed world. Pathophysiology of TBI is complex and consists of acute and delayed injury. In the acute phase, brain tissue destroyed upon impact includes neurons, glia, and endothelial cells, the latter of which makes up the blood-brain barrier. In the delayed phase, “toxins” released from damaged cells set off cascades in neighboring cells eventually leading to exacerbation of primary injury. As researches further explore pathophysiology and molecular mechanisms underlying this debilitating condition, numerous potential therapeutic strategies, especially those involving stem cells, are emerging to improve recovery and possibly reverse damage. In addition to elucidating the most recent advances in the understanding of TBI pathophysiology, this review explores two primary pathways currently under investigation and are thought to yield the most viable therapeutic approach for treatment of TBI: manipulation of endogenous neural cell response and administration of exogenous stem cell therapy.
Background and Purpose
The aim of this study is to identify the early predictors for delayed cerebral ischemia (DCI) and develop a risk stratification score by focusing on the early change after aneurysmal subarachnoid hemorrhage (aSAH).
Methods
The study retrospectively reviewed aSAH patients between 2014 and 2015. Risk factors within 72 hours after aSAH were included into univariable and multivariable logistic regression analysis to screen the independent predictors for DCI and to design a risk stratification score.
Results
We analyzed 702 aSAH patients; four predictors were retained from the final multivariable analysis: World Federation of Neurosurgical Societies scale (WFNS; OR = 4.057, P < .001), modified Fisher Scale (mFS; OR = 2.623, P < .001), Subarachnoid Hemorrhage Early Brain Edema Score (SEBES; OR = 1.539, P = .036), and intraventricular hemorrhage (IVH; OR = 1.932, P = .002). According to the regression coefficient, we created a risk stratification score ranging from 0 to 7 (WFNS = 3, mFS = 2, SEBES = 1, and IVH = 1). The new score showed a significantly higher area under curve (0.785) compared with other scores (P < .001).
Conclusion
The early DCI score provides a practical method at the early 72 hours after aSAH to predict DCI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.