The usage of biostimulants in agriculture has been steadily increasing in recent years, and their benefits have been recognised by growers. The growing interest from industry has led to a boom in the number of products on the market, many of which are derived from a diverse range of sources such as microbials, plant extracts, hydrolysed amino acids and algal extracts. However, there has been a slower recognition of the biostimulant sector by the scientific community. This has been a result of limited fundamental research into the modes of action of many biostimulant products and the speed at which new multi‐compound products have entered the market. In this study, we have developed a readily reproducible bioassay using the model plant Arabidopsis thaliana to test biostimulant efficacy under drought conditions and assess any chemical priming action. We have screened three products with biostimulant action derived from amino acids (Delfan Plus), Ascophyllum nodosum extract (Phylgreen) or potassium phosphite (Trafos K). Under a progressive soil drought condition, we measured changes in plant growth, biochemical content and gene expression levels. Our results demonstrated biostimulant‐mediated drought tolerance, with the products requiring different application timings for successful stress mitigation. The analysis of the biochemical and gene expression changes provided evidence of chemical priming action when plants were pre‐treated with biostimulants prior to the drought stress exposure.
Although nickel (Ni) is recognized as plant nutrient since the turn of the 21 st century, uncertainty remains about its optimum application rates and forms. This paper focuses on Ni application in soils, relating to its effect as a plant micronutrient. Specifically, the effect of Ni on the activity of urease in soybean plants is examined.The effects of applying four Ni rates in two different soil types were tested. A full factorial 2 × 4 blocked design experiment was established under controlled conditions. Ni rates (0, 0.25, 0.5 and 1.0 mg of Ni·kg -1 of soil) were applied in two soils with contrasting clay contents. The addition of Ni increased the urease activity in soybean plants but was affected by soil textural differences. The highest urease activity was achieved by the application of 1.0 mg·kg -1 Ni in the sandy soil. The absorption of Ni by the plants and its availability was found to be soil texture dependent. The rate of 0.25 mg·kg -1 Ni increased the soybean dry matter production by 25% in the sandy soil. In conclusion, Ni was effective in promoting plant growth and biomass accumulation although depending on soil clay proportion. For soybean, there was no correlation between urease activity and biomass accumulation.The results of this study indicate a clear Ni effect in different type of soils in São Paulo state, serving as a solid initial doses indicator for soybean fertilization programs and future studies on nickel in Soybean.
Plant stress induced by high temperature is a problem in wide areas of different regions in the world. The trend of global warming is going to enhance the effects of heat stress on crops in many cultivation areas. Heat stress impairs the stability of cell membranes and many biological processes involving both primary and secondary metabolism. Biostimulants are innovative agronomical tools that can be used as a strategy to counteract the detrimental effect of abiotic stresses, including heat stress. In this work, two biostimulants based on Ascophyllum nodosum extracts (named Phylgreen) and based on animal L-α amino acids (named Delfan Plus) were applied as priming treatments to Arabidopsis thaliana plants subjected to heat stress exposure. Plants at the vegetative stage were treated with biostimulants 12 h before high temperature exposure, which consisted of maintaining the plants at 37 ± 1 °C for 4 h. Transcriptional profiles, physiological, and biochemical analyses were performed to understand the mode of action of the biostimulants in protecting the plants exposed to short-term heat stress. At a physiological level, chlorophyll, chlorophyll a fluorescence, phenolic index, total anthocyanins, reactive oxygen species (ROS) were measured, and significant variations were observed immediately after stress. Both biostimulants were able to reduce the oxidative damage in leaves and cell membrane. Transcriptomic data revealed that upregulated genes were 626 in Phylgreen and 365 in Delfan Plus, while downregulated genes were 295 in Phylgreen and 312 in Delfan Plus. Bioinformatic analysis showed that the biostimulants protected the plants from heat stress by activating specific heat shock proteins (HPS), antioxidant systems, and ROS scavengers. The results revealed that the biostimulants effectively induced the activation of heat stress-associated genes belonging to different transcription factors and HSP families. Among the heat shock proteins, the most important was the AtHSP17 family and in particular, those influenced by treatments were AtHPS17.4 and AtHPS17.6A, B, showing the most relevant changes.
RESUMO Disponibilidade de metais pesados a estratores químicos em solos contaminadosMetais pesados vêm se acumulando em solos brasileiros em razão de processos naturais, como deposições atmosféricas, ou atividades antropogênicas. Para alguns metais pesados, em condição de altas concentrações no solo, não existe um extrator especifico que avalie sua biodisponibilidade. Objetivou-se no presente trabalho, avaliar a biodisponibilidade dos elementos Cd, Cu, Fe, Mn, Pb e Zn para plantas de arroz e soja, utilizando diferentes extratores químicos. Neste estudo foram utilizadas sete amostras de solos com diferentes graus de contaminação, em delineamento experimental inteiramente casualizado, com quatro repetições. Foram determinados os teores disponíveis de Cd, Cu, Fe, Mn, Pb e Zn extraídos pelas soluções de Mehlich-1, HCl 0,1 mol L -1 , DTPA e ácidos orgânicos, e os teores desses elementos em plantas de arroz e soja, cujos extratos foram analisado por ICP-OES. Observou-se que os extratores Mehlich-1, HCl 0,1 mol L -1 e DTPA foram eficientes para avaliar a disponibilidade de Cd, Cu, Pb e Zn para plantas de arroz e soja. O mesmo não foi observado para os extratores derivados de ácidos orgânicos. Palavras Availability of heavy metals in contaminated soil evidenced by chemical extractantsHeavy metals have been accumulating in Brazilian soils, due to natural processes, such as atmospheric deposition, or human industrial activities. For certain heavy metals, when in high concentrations in the soil, there is no specific extractant to determine the availability of these elements in the soil. The objective of the present study was to evaluate the availability of Cd, Cu, Fe, Mn, Pb and Zn for rice and soybeans, using different chemical extractants. In this study we used seven soil samples with different levels of contamination, in completely randomized experimental design with four replications. We determined the available concentrations of Cd, Cu, Fe, Mn, Pb and Zn extracted by Mehlich-1, HCl 0.1 mol L -1 , DTPA, and organic acid extractants and the contents in rice and soybeans, which extracts were analyzed by ICP-OES. It was observed that Mehlich-1, HCl 0.1 mol L -1 and DTPA extractants were effective to assess the availability of Cd, Cu, Pb and Zn for rice and soybeans. However, the same was not observed for the organic acid extractant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.