Coronavirus (COVID-19) disease outbreak caused a worldwide pandemic with a powerful lethal potential and still, there is no specific treatment to it. Natural bioactive molecules like curcumins were investigated in this work aiming to block the active site of COVID-19 Main protease (Mpro), since they present several biological activities, being more suitable in terms of fewer side effects, once this disease overloads the immune system of patients. Hereby, curcumin and several derivatives were screened for their ability to react with Mpro receptors (PDB: 6LU7). N3, Azithromycin (AZT), and Baracitinib (BRT) were evaluated as positive controls and in combined therapeutics possibilities with curcumins. N3, AZT, and BRT bound to different protein receptors, and also it was observed that N3 bound in the same site as hexahydrocurcumin and curcumin glucuronide bound at the AZT’s site and bisdemethoxycurcumin, curcumin, curcumin sulfate, cyclocurcumin, demethoxycurcumin, dihydrocurcumin and hexahydrocurcuminol bound at BRT’s site. All molecules analyzed have high force interaction fields. Once the viral activity is mainly intracellular, these compounds also were evaluated for their hydropathic abilities. All molecules were classified and considered capable of membrane cell invading. These results suggest that the therapeutic approach of the curcumin derivatives associated with AZT and the antiviral inhibitor N3 is promissory for future evaluation of their synergism in in vitro and in vivo tests to define their additional viability in the treatment of COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.