Components of the complement system and atypical parameters of coagulation were reported in COVID-19 patients, as well as the exacerbation of the inflammation and coagulation activity. Mannose binding lectin (MBL)-associated serine proteases (MASPs) play an important role in viral recognition and subsequent activation of the lectin pathway of the complement system and blood coagulation, connecting both processes. Genetic variants of MASP1 and MASP2 genes are further associated with different levels and functional efficiency of their encoded proteins, modulating susceptibility and severity to diseases. Our review highlights the possible role of MASPs in SARS-COV-2 binding and activation of the lectin pathway and blood coagulation cascades, as well as their associations with comorbidities of COVID-19. MASP-1 and/or MASP-2 present an increased expression in patients with COVID-19 risk factors: diabetes, arterial hypertension and cardiovascular disease, chronic kidney disease, chronic obstructive pulmonary disease, and cerebrovascular disease. Based also on the positive results of COVID-19 patients with anti-MASP-2 antibody, we propose the use of MASPs as a possible biomarker of the progression of COVID-19 and the investigation of new treatment strategies taking into consideration the dual role of MASPs, including MASP inhibitors as promising therapeutic targets against COVID-19.
Thousands of leprosy patients not only suffer from physical deformities, but also either have or have had hepatitis B virus (HBV) coinfection. Polymorphisms of the complement system modulate susceptibility to leprosy, but genetic susceptibility to past or present HBV infection is unknown. We used sequencing and multiplex sequence-specific PCR to genotype 72 polymorphisms of seven genes (MBL2, FCN1, FCN2, FCN3, MASP1, MASP2, C3) encoding components of the lectin pathway, and two genes encoding complement receptors (CR1, VSIG4) in 190 patients, of which 74 were positive for HBsAg and/or anti-HBc (HBV+, 93.2% with a resolved infection) and 116 lepromatous patients, and 408 HBV-blood donors. In addition, we tested for levels of proteins of the lectin pathway. We found no difference between serum concentrations of mannan-binding lectin (MBL), MBL-associated serine proteins (MASP-1, MASP-2, MASP-3, MAp44), ficolin-3 (FCN-3), soluble complement receptor 1 (sCR1) and MBL mediated C4 activation, measured by ELISA or TRIFMA in up to 167 HBV+ and HBV− patients. Haplotypes lowering protein levels or encoding dysfunctional proteins increased susceptibility to HBV infection: MBL2*LYQC (OR = 3.4, p = 0.02), MASP1*AC_CC (OR = 4.0, p = 0.015) and MASP2*1C2-l (OR = 5.4, p = 0.03). Conversely, FCN1*3C2 haplotype, associated with higher gene expression, was protective (OR = 0.56, P = 0.033). Other haplotypes associated with HBV susceptibility were: MASP2*2B1-i (OR = 19.25, P = 0.003), CR1*3A (OR = 2.65, P = 0.011) and VSIG4*TGGRCG (OR = 12.55, P = 0.014). Some polymorphisms in ficolin genes associated with lower protein levels increased susceptibility to leprosy/HBV infection: FCN*1 (OR = 1.66, P = 0.029), FCN2*GGGCAC (OR = 6.73, P = 0.008), and FCN3*del_del_C (OR = 12.54, P = 0.037), and to lepromatous disease/HBV infection: FCN2*TA (OR = 2.5, P = 0.009), whereas FCN2*MAG was associated with increased FCN-2 expression and resistance against coinfection (OR = 0.29, P = 0.026). These associations were independent of demographic factors and did not increase susceptibility to leprosy per se, except MASP2*1C2-l. Associations for FCN2, FCN3, MASP1, MASP2, and VSIG4 variants were also independent of each other. In conclusion, polymorphisms compromising activation of the lectin pathway of complement increase susceptibility to HBV infection, with ficolin polymorphisms playing a major role in modulating the susceptibility among leprosy patients.
MicroRNAs (miRNAs) regulate gene expression by binding to complementary sequences within target mRNAs. Apart from working ‘solo’, miRNAs may interact in important molecular networks such as competing endogenous RNA (ceRNA) axes. By competing for a limited pool of miRNAs, transcripts such as long noncoding RNAs (lncRNAs) and mRNAs can regulate each other, fine-tuning gene expression. Several ceRNA networks led by different lncRNAs—described here as lncRNA-mediated ceRNAs—seem to play essential roles in cervical cancer (CC). By conducting an extensive search, we summarized networks involved in CC, highlighting the major impacts of such dynamic molecular changes over multiple cellular processes. Through the sponging of distinct miRNAs, some lncRNAs as HOTAIR, MALAT1, NEAT1, OIP5-AS1, and XIST trigger crucial molecular changes, ultimately increasing cell proliferation, migration, invasion, and inhibiting apoptosis. Likewise, several lncRNAs seem to be a sponge for important tumor-suppressive miRNAs (as miR-140-5p, miR-143-3p, miR-148a-3p, and miR-206), impairing such molecules from exerting a negative post-transcriptional regulation over target mRNAs. Curiously, some of the involved mRNAs code for important proteins such as PTEN, ROCK1, and MAPK1, known to modulate cell growth, proliferation, apoptosis, and adhesion in CC. Overall, we highlight important lncRNA-mediated functional interactions occurring in cervical cells and their closely related impact on cervical carcinogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.