Biliary atresia leads to cirrhosis in the vast majority of patients and constitutes the first cause of paediatric liver transplantation. Animal models allow us to understand the molecular basis and natural history of diseases. The aim of this study is to describe a surgically created animal model of biliary atresia with emphasis in long-term liver function. Forty-two 3-week-old Sprague- Dawley rats were randomly divided into two groups: bile duct ligature (BDL) and control. The animals were sacrificed on the 2nd, 4th, and 6th postoperative weeks. Blood samples were collected for liver function analysis. The spleen to body weight ratio was determined. Histopathological examination of liver tissue was performed by hematoxylin-eosin and Sirius red staining. Collagen quantification was determined by using colorimetric digital image analysis and was expressed as a percentage of total liver tissue area. Quantitative real-time polymerase chain reaction was performed to analyse gene expression levels of transforming growth factor-β1 (Tgfb1) and apeline (Apln) genes. Statistical analysis was performed where P<0.05 was considered significant. Animals from BDL group developed increasing cholestasis with clinical and laboratory features. Splenomegaly was detected at 4th and 6th week (P<0.05). Histological evaluation of the liver showed ductular reaction, portal fibrosis and bile plugs. Collagen area to total liver tissue area had a median of 2.5% in the control group and 6.5 %, 14.3 % and 37.7 % in BDL rats at 2nd, 4th and 6th weeks, respectively (P<0.001). Tgfb1 mRNA expression level was significantly higher at 6th week (P<0.001) in BDL group when compared to control. Apln mRNA expression level was significantly higher at 4th and 6th week (P<0.001) and showed a positive linear correlation (r = 0.975, P<0.05) in BDL group when compared to control. Bile duct ligature in young rats is an animal model that recreates clinical, laboratory, histological and molecular findings of biliary atresia. Bile duct ligature constitutes a good animal model to investigate therapeutic approaches for modifying the progression of liver fibrosis in biliary atresia.
Purpose Biliary atresia precedes liver cirrhosis and liver transplantation. Amniotic membrane (AM) promotes tissue regeneration, inhibits fibrosis, and reduces inflammation. Here, we test amniotic membrane potential as a therapeutic tool against cholestatic liver fibrosis. Methods Three groups of rats were used: sham surgery (SS), bile duct ligature (BDL), and bile duct ligature plus human amniotic membrane (BDL + AM). After surgery, animals were sacrificed at different weeks. Biochemical and histopathological analyses of liver tissue were performed. Collagen was expressed as a percentage of total liver tissue area. qPCR was performed to analyse gene expression levels of transforming growth factor-β1 (Tgfb1) and apelin (Apln). Statistical analysis performed considered p < 0.05 was significant. Results Groups undergoing BDL developed cholestasis. Biochemical markers from BDL + AM group improved compared to BDL group. Ductular reaction, portal fibrosis, and bile plugs were markedly reduced in the BDL + AM group compared to BDL group. Collagen area in BDL + AM group was statistically decreased compared to BDL group. Finally, expression levels of both Apln and Tgfb1 mRNA were statistically downregulated in BDL + AM group versus BDL group. Conclusion AM significantly reduces liver fibrosis in a surgical animal model of cholestasis. Our results suggest that AM may be useful as a therapeutic tool in liver cirrhosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.