Morphological classification is a key piece of information to define samples of galaxies aiming to study the large-scale structure of the universe. In essence, the challenge is to build up a robust methodology to perform a reliable morphological estimate from galaxy images. Here, we investigate how to substantially improve the galaxy classification within large datasets by mimicking human classification. We combine accurate visual classifications from the Galaxy Zoo project with machine and deep learning methodologies. We propose two distinct approaches for galaxy morphology: one based on non-parametric morphology and traditional machine learning algorithms; and another based on Deep Learning. To measure the input features for the traditional machine learning methodology, we have developed a system called CyMorph, with a novel non-parametric approach to study galaxy morphology. The main datasets employed comes from the Sloan Digital Sky Survey Data Release 7 (SDSS-DR7). We also discuss the class imbalance problem considering three classes. Performance of each model is mainly measured by Overall Accuracy (OA). A spectroscopic validation with astrophysical parameters is also provided for Decision Tree models to assess the quality of our morphological classification. In all of our samples, both Deep and Traditional Machine Learning approaches have over 94.5% OA to classify galaxies in two classes (elliptical and spiral). We compare our classification with state-of-the-art morphological classification from literature. Considering only two classes separation, we achieve 99% of overall accuracy in average when using our deep learning models, and 82% when using three classes. We provide a catalog with 670,560 galaxies containing our best results, including morphological metrics and classification.ETGs have T-Type ≤ 0 and LTGs have T-Type > 0 (de Vaucouleurs, 1963). T-Type considers ellipticity and spiral arms strength but does not reflect the presence or absence of the bar feature in spirals.Morphology reveals structural, intrinsic and environmental properties of galaxies. In the local universe, ETGs are mostly situated in the center of galaxy clusters, have a larger mass, less gas, higher velocity dispersion, and older stellar populations than LTGs, which are rich star-forming systems (Roberts and Haynes, 1994;Blanton and Moustakas, 2009;Pozzetti et al., 2010). By mapping where the ETGs are, it is possible to map the large-scale structure of the universe. Therefore, galaxy morphology is of paramount importance for extragalactic research as it relates to stellar properties and key aspects of the evolution and structure of the universe.Astronomy has become an extremely data-rich field of knowledge with the advance of new technologies in recent decades. Nowadays it is impossible to rely on human classification given the huge flow of data attained by current research
Different mechanisms for quenching star formation in galaxies are commonly invoked in the literature, but the relative impact of each one at different cosmic epochs is still unknown. In particular, the relation between these processes and morphological transformation remains poorly understood. In this work, we measure the effectiveness of changes in star formation rates by analysing a new parameter, the Star Formation Acceleration (SFA), as a function of galaxy morphology. This methodology is capable of identifying both bursting and quenching episodes that occurred in the preceding 300 Myrs. We use morphological classification catalogs based on Deep learning techniques. Our final sample has ∼14,200 spirals and ∼2,500 ellipticals. We find that elliptical galaxies in the transition region have median shorter quenching timescales (τ < 1 Gyr) than spirals (τ ≥ 1 Gyr). This result conforms to the scenario in which major mergers and other violent processes play a fundamental role in galaxy evolution for most ellipticals, not only quenching star formation more rapidly but also playing a role in morphological transformation. We also find that ∼two thirds of galaxies bursting in the green valley in our sample are massive spirals (M⋆ ≥ 1011.0 M⊙) with signs of disturbance. This is in accordance with the scenario where low mass galaxies are losing their gas in a interaction with a massive galaxy: while the former is quenching, the last is being refueled and going through a burst, showing signs of recent interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.