Genetic modification of germline stem cells (GSCs) is an alternative approach to generate large transgenic animals where transgenic GSCs are transplanted into a recipient testis to generate donor-derived transgenic sperm. The objective of the present study was to explore the application of viral vectors in delivering an enhanced green fluorescent protein (EGFP) transgene into GSCs for production of transgenic gametes through germ cell transplantation. Both adeno-associated virus (AAV)- and lentivirus (LV)-based vectors were effective in transducing pig GSCs, resulting in the production of transgenic sperm in recipient boars. Twenty-one boars treated with busulfan to deplete endogenous GSCs and nine nontreated boars received germ cell transplantation at 12 wk of age. Semen was collected from recipient boars from 5 to 7 mo posttransplantation when boars became sexually mature, and semen collection continued for as long as 5 yr for some boars. The percentage of ejaculates that were positive for the EGFP transgene ranged from 0% to 54.8% for recipients of AAV vector-transduced germ cells (n = 17) and from 0% to 25% for recipients of LV vector-transduced germ cells (n = 5). When semen from two AAV recipients was used for in vitro fertilization (IVF), 9.09% and 64.3% of embryos were transgenic. Semen collected from two LV-vector recipients produced 7.7% and 26.3% transgenic IVF embryos. Here, we not only demonstrated AAV-mediated GSC transduction in another large animal model (pigs) but also showed, to our knowledge for the first time, that LV-mediated GSC transduction resulted in transgene transmission in pigs.
Lymphoid-specific helicase (HELLS; also known as LSH) is a member of the SNF2 family of chromatin remodeling proteins. Because Hells-null mice die at birth, a phenotype in male meiosis cannot be studied in these animals. Allografting of testis tissue from Hells(-/-) to wild-type mice was employed to study postnatal germ cell differentiation. Testes harvested at Day 18.5 of gestation from Hells(-/-), Hells(+/-), and Hells(+/+) mice were grafted ectopically to immunodeficient mice. Bromodeoxyuridine incorporation at 1 wk postgrafting revealed fewer dividing germ cells in grafts from Hells(-/-) than from Hells(+/+) mice. Whereas spermatogenesis proceeded through meiosis with round spermatids in grafts from Hells heterozygote and wild-type donor testes, spermatogenesis arrested at stage IV, and midpachytene spermatocytes were the most advanced germ cell type in grafts from Hells(-/-) mice at 4, 6, and 8 wk after grafting. Analysis of meiotic configurations at 22 days posttransplantation revealed an increase in Hells(-/-) spermatocytes with abnormal chromosome synapsis. These results indicate that in the absence of HELLS, proliferation of spermatogonia is reduced and germ cell differentiation arrested at the midpachytene stage, implicating an essential role for HELLS during male meiosis. This study highlights the utility of testis tissue grafting to study spermatogenesis in animal models that cannot reach sexual maturity.
De novo formation of testis tissue from single cell suspensions allows manipulation of different testicular compartments before grafting to study testicular development and the spermatogonial stem cell niche. However, the low percentages of newly formed seminiferous tubules supporting complete spermatogenesis and lack of a defined protocol have limited use of this bioassay. Low spermatogenic efficiency in de novo formed tissue could result from the scarcity of germ cells in the donor cell suspension, cell damage caused by handling or from hypoxia during tissue formation in the host environment. Here, we compared different proportions of spermatogonia in the donor cell suspension and the use of Matrigel as scaffold to support de novo tissue formation and spermatogenesis. Then, we utilized the system to investigate the role of Vascular Endothelial Growth Factor-165 during testicular morphogenesis on blood vessel and seminiferous tubule formation, and on presence of germ cells in the de novo developed tubules. Our results show that donor cell pellets with 10×106 porcine neonatal testicular cells in Matrigel efficiently formed testis tissue de novo. Contrary to what was expected, the enrichment of the cell suspension with germ cells did not result in higher numbers of tubules supporting spermatogenesis. The addition of VEGF-165 did not improve blood vessel or tubule formation but it enhanced the number of tubules containing spermatogonia. These results indicate that spermatogenic efficiency was improved by the addition of Matrigel, and that VEGF-165 may have a protective role supporting germ cell establishment in their niche.
These data indicate that for low grade MCTs, HTFMs >0 mm should not be considered completely excised, particularly when HTFM is <10.9 mm. This will inform future studies that use HTFM and overall excisional status as dependent variables in multivariable prognostic models.
The testis is a complex organ playing host to one of the most intricate mass cell divisions occurring in postnatal life. Since the beginning of the 20th century, great efforts have been made to recapitulate spermatogenesis and elucidate spermatogonial stem cell function. These efforts have resulted in the development of a variety of model systems that provide invaluable knowledge regarding testis organogenesis, key cell types and their interactions, and signaling pathways controlling testis function. The goal of this review is to elaborate on the evolution of the techniques available from in vitro culture systems to in vivo bioassays by providing up to date information and weighing their particular strengths and weaknesses. Each technique offers a different approach to the elucidation of male reproduction, the enhancement of germ-lineage genetic manipulation, the preservation of gametes, the restoration of fertility, and the improvement in our understanding of stem cell biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.