BackgroundThe S6 Kinase (S6K) proteins are some of the main downstream effectors of the mammalian Target Of Rapamycin (mTOR) and act as key regulators of protein synthesis and cell growth. S6K is overexpressed in a variety of human tumors and is correlated to poor prognosis in prostate cancer. Due to the current urgency to identify factors involved in prostate cancer progression, we aimed to reveal the cellular functions of three S6K isoforms–p70-S6K1, p85-S6K1 and p54-S6K2–in prostate cancer, as well as their potential as therapeutic targets.MethodsIn this study we performed S6K knockdown and overexpression and investigated its role in prostate cancer cell proliferation, colony formation, viability, migration and resistance to docetaxel treatment. In addition, we measured tumor growth in Nude mice injected with PC3 cells overexpressing S6K isoforms and tested the efficacy of a new available S6K1 inhibitor in vitro.ResultsS6Ks overexpression enhanced PC3-luc cell line viability, migration, resistance to docetaxel and tumor formation in Nude mice. Only S6K2 knockdown rendered prostate cancer cells more sensitive to docetaxel. S6K1 inhibitor PF-4708671 was particularly effective for reducing migration and proliferation of PC3 cell line.ConclusionsThese findings demonstrate that S6Ks play an important role in prostate cancer progression, enhancing cell viability, migration and chemotherapy resistance, and place both S6K1 and S6K2 as a potential targets in advanced prostate cancer. We also provide evidence that S6K1 inhibitor PF-4708671 may be considered as a potential drug for prostate cancer treatment.Electronic supplementary materialThe online version of this article (doi:10.1186/s12885-016-2629-y) contains supplementary material, which is available to authorized users.
S6Ks are major effectors of the mTOR (mammalian target of rapamycin) pathway, signaling for increased protein synthesis and cell growth in response to insulin, AMP/ATP levels, and amino acids. Deregulation of this pathway has been related to disorders and diseases associated with metabolism, such as obesity, diabetes, and cancer. S6K family is composed of two main members, S6K1 and S6K2, which comprise different isoforms resulted from alternative splicing or alternative start codon use. Although important molecular functions have been associated with p70-S6K1, the most extensively studied isoform, the S6K2 counterpart lacks information. In the present study, we performed immunoprecipitation assays followed by mass spectrometry (MS) analysis of FLAG-tagged p70-S6K1 and p54-S6K2 interactomes, after expression in HEK293 cells. Protein lists were submitted to CRAPome (Contaminant Repository for Affinity Purification) and SAINT (Significance Analysis of INTeractome) analysis, which allowed the identification of high-scoring interactions. By a comparative approach, p70-S6K1 interacting proteins were predominantly related to "cytoskeleton" and "stress response," whereas p54-S6K2 interactome was more associated to "transcription," "splicing," and "ribosome biogenesis." Moreover, we have found evidences for new targets or regulators of the S6K protein family, such as proteins NCL, NPM1, eIF2α, XRCC6, PARP1, and ILF2/ILF3 complex. This study provides new information about the interacting networks of S6Ks, which may contribute for future approaches to a better understanding of the mTOR/S6K pathway.
Sepsis is one of the leading causes of death in hospitalized patients and the chronic and low-grade inflammation observed in obesity seems to worsen susceptibility and morbidity of infections. However, little is known with respect to a short-term high-fat diet (HFD) and its role in the development of sepsis. Here, we show for the first time, that short-term HFD consumption impairs early nicotinic acetylcholine receptor α7 subunit (α7nAChR)- mediated signaling, one of the major components of the cholinergic anti-inflammatory pathway, with a focus on hypothalamic inflammation and innate immune response. Mice were randomized to a HFD or standard chow (SC) for 3 days, and sepsis was subsequently induced by a lethal intraperitoneal (i.p.) injection of lipopolysaccharide (LPS) or by cecal ligation and puncture (CLP) surgery. In a separate experiment, both groups received LPS (i.p.) or LPS (i.p.) in conjunction with the selective α7nAChR agonist, PNU-282987 (i.p. or intracerebroventricular; i.c.v.), and were sacrificed 2 h after the challenge. Short-term HFD consumption significantly reduced the α7nAChR mRNA and protein levels in the hypothalamus and liver ( p < 0.05). Immunofluorescence microscopy demonstrated lower cholinergic receptor nicotinic α7 subunit (α7nAChR)+ cells in the arcuate nucleus (ARC) (α7nAChR+ cells in SC = 216 and HFD = 84) and increased F4/80+ cells in the ARC (2.6-fold) and median eminence (ME) (1.6-fold), which can contribute to neuronal damage. Glial fibrillary acidic protein (GFAP)+ cells and neuronal nuclear antigen (NeuN)+ cells were also increased following consumption of HFD. The HFD-fed mice died quickly after a lethal dose of LPS or following CLP surgery (2-fold compared with SC). The LPS challenge raised most cytokine levels in both groups; however, higher levels of TNF-α (Spleen and liver), IL-1β and IL-6 (in all tissues evaluated) were observed in HFD-fed mice. Moreover, PNU-282987 administration (i.p. or i.c.v.) reduced the levels of inflammatory markers in the hypothalamus following LPS injection. Nevertheless, when the i.c.v. injection of PNU-282987 was performed the anti-inflammatory effect was much smaller in HFD-fed mice than SC-fed mice. Here, we provide evidence that a short-term HFD impairs early α7nAChR expression in central and peripheral tissues, contributing to a higher probability of death in sepsis.
Scope: Coconut oil (CO) diets remain controversial due to the possible association with metabolic disorder and obesity. This study investigates the metabolic effects of a low amount of CO supplementation. Methods and Results: Swiss male mice are assigned to be supplemented orally during 8 weeks with 300 µL of water for the control group (CV), 100 or 300 µL of CO (CO100 and CO300) and 100 or 300 µL of soybean oil (SO; SO100 and SO300). CO led to anxious behavior, increase in body weight gain, and adiposity. In the hypothalamus, CO and SO increase cytokines expression and pJNK, pNFKB, and TLR4 levels. Nevertheless, the adipose tissue presented increases macrophage infiltration, TNF-and IL-6 after CO and SO consumption. IL-1B and CCL2 expression, pJNK and pNFKB levels increase only in CO300. In the hepatic tissue, CO increases TNF-and chemokines expression. Neuronal cell line (mHypoA-2/29) exposed to serum from CO and SO mice shows increased NFKB migration to the nucleus, TNF-, and NFKBia expression, but are prevented by inhibitor of TLR4 (TAK-242). Conclusions: These results show that a low-dose CO changes the behavioral pattern, induces inflammatory pathway activation, TLR4 expression in healthy mice, and stimulates the pro-inflammatory response through a TLR4-mediated mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.