SummaryAlthough all human tissues carry out common processes, tissues are distinguished by gene expression patterns, implying that distinct regulatory programs control tissue specificity. In this study, we investigate gene expression and regulation across 38 tissues profiled in the Genotype-Tissue Expression project. We find that network edges (transcription factor to target gene connections) have higher tissue specificity than network nodes (genes) and that regulating nodes (transcription factors) are less likely to be expressed in a tissue-specific manner as compared to their targets (genes). Gene set enrichment analysis of network targeting also indicates that the regulation of tissue-specific function is largely independent of transcription factor expression. In addition, tissue-specific genes are not highly targeted in their corresponding tissue network. However, they do assume bottleneck positions due to variability in transcription factor targeting and the influence of non-canonical regulatory interactions. These results suggest that tissue specificity is driven by context-dependent regulatory paths, providing transcriptional control of tissue-specific processes.
Highlights d Sex differences are evident in sample-specific gene regulatory networks d TF sex-biased targeting of genes is independent of their differential expression d Sex-biased target genes are enriched for tissue-related functions and diseases d Rich public resource that includes 8,279 gene regulatory networks of 29 tissues
Understanding sex differences in colon cancer is essential to advance disease prevention, diagnosis, and treatment. Males have a higher risk of developing colon cancer and a lower survival rate than women. However, the molecular features that drive these sex differences are poorly understood. In this study, we use both transcript-based and gene regulatory network methods to analyze RNA-seq data from The Cancer Genome Atlas for 445 patients with colon cancer. We compared gene expression between tumors in men and women and observed significant sex differences in sex chromosome genes only. We then inferred patient-specific gene regulatory networks and found significant regulatory differences between males and females, with drug and xenobiotics metabolism via cytochrome P450 pathways more strongly targeted in females. This finding was validated in a dataset of 1193 patients from five independent studies. While targeting the drug metabolism pathway did not change overall survival for males treated with adjuvant chemotherapy, females with greater targeting showed an increase in 10-year overall survival probability, 89% (95% CI: 78%−100%) survival compared to 61% (95% CI: 45%−82%) for women with lower targeting, respectively (p=0.034). Our network analysis uncovers patterns of transcriptional regulation that differentiate male and female colon cancer and identifies differences in regulatory processes involving the drug metabolism pathway associated with survival in women who receive adjuvant chemotherapy. This approach can be used to investigate the molecular features that drive sex differences in other cancers and complex diseases.
Although all human tissues carry out common processes, tissues are distinguished by gene expres-sion patterns, implying that distinct regulatory programs control tissue-specificity. In this study, we investigate gene expression and regulation across 38 tissues profiled in the Genotype-Tissue Expression project. We find that network edges (transcription factor to target gene connections) have higher tissue-specificity than network nodes (genes) and that regulating nodes (transcription factors) are less likely to be expressed in a tissue-specific manner as compared to their targets (genes). Gene set enrichment analysis of network targeting also indicates that regulation of tissue-specific function is largely independent of transcription factor expression. In addition, tissue-specific genes are not highly targeted in their corresponding tissue-network. However, they do assume bottleneck positions due to variability in transcription factor targeting and the influence of non-canonical regulatory interactions. These results suggest that tissue-specificity is driven by context-dependent regulatory paths, providing transcriptional control of tissue-specific processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.