Real-Time Digital Simulation (RTDS) is a powerful tool in modeling and analyzing electrical and drive systems because it provides an efficient and accurate process. There are several hardware devices for this type of simulation; however, their high costs have led to the increasing use of more affordable and reconfigurable technologies. In this context, many logic blocks and storage elements make the Field Programmable Gate Array (FPGA) an ideal device to perform RTDS. This work proposes a technique to embed a real-time digital simulator in an FPGA through Hardware Description Language (HDL) since it provides liberty in the architecture choice and no dependency on commercial ready-made hardware–software packages. The approach proposed focuses on system design developing with expression tree graph, synthesizing and verifying, prioritizing the performance and design accuracy concerning area and power consumption. Thus, the result acquisition occurs at a time step considered in real-time. A simulation of a direct current (DC) motor speed control has been incorporated into this work as an example of application, which includes the embedding and simulation of the electric machine and its drive system. Performance tests have shown that the developed simulator is real-time and makes possible realistic analysis of the interaction between the plant and its control. In addition, an idea of the hardware requirement for real-time simulation is proposed based on the number of mathematical operations.
Resumo -Atualmente, dentre as topologias de sistemas de conversão de energia eólica (SCEE), as baseadas em conversores de potência plenos estão em crescimento, uma vez que este tipo de conversor permite a operação da máquina em largas faixas de velocidade, o que resulta em um melhor aproveitamento da potência disponível no vento. Para este tipo de aplicação utiliza-se principalmente o gerador síncrono de ímã permanente, devido à sua possibilidade de operação em uma larga faixa de velocidade. Se o esquema de conversores é do tipo back-to-back, um conversor do lado da máquina é responsável pelo rastreamento da potência máxima, enquanto o conversor do lado da rede é responsável por controlar as potências ativa e reativa entregues à rede elétrica. Convencionalmente, os dois conversores são controlados por métodos vetoriais baseados em malhas PI. Neste trabalho propõe-se uma estratégia de controle baseada em realimentação de estados em que, a fim de obter precisão, é utilizado o controle preditivo GPC (Generically Predictive Control). Simulações em MATLAB/Simulink para um sistema teste mostram que a estratégia proposta possibilita um controle preciso da velocidade.Palavras-Chave -Controle Preditivo, Energia Eólica, Gerador Síncrono de Ímã Permanente, Rastreamento do Ponto de Máxima Potência.
MPPT OF WIND ENERGY CONVERSION SYSTEMS BASED ON PMSG THROUGH PREDICTIVE CONTROLAbstract -Currently, among the wind energy conversion systems topologies, one based on fully-rated power converters is in growth, since this kind of drive allows operation over wide speed ranges, resulting in improved power income from the available wind energy. This application mainly uses permanent magnet synchronous generators, due to its operability on wide range of speeds. When the converters link is of back-toback type, the machine side converter is responsible for maximum power point tracking (MPPT), while the grid side converter is responsible for active and reactive powers delivered to the grid. Conventionally, both
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.