The recently published ICH E9 addendum on estimands in clinical trials provides a framework for precisely defining the treatment effect that is to be estimated, but says little about estimation methods. Here we report analyses of a clinical trial in type 2 diabetes, targeting the effects of randomised treatment, handling rescue treatment and discontinuation of randomised treatment using the so-called hypothetical strategy. We show how this can be estimated using mixed models for repeated measures, multiple imputation, inverse probability of treatment weighting, G-formula and G-estimation. We describe their assumptions and practical details of their implementation using packages in R. We report the results of these analyses, broadly finding similar estimates and standard errors across the estimators. We discuss various considerations relevant when choosing an estimation approach, including computational time, how to handle missing data, whether to include post intercurrent event data in the analysis, whether and how to adjust for additional time-varying confounders, and whether and how to model different types of ICE separately.
When drawing causal inference from observed data, failure time outcomes present additional challenges of censoring often combined with other missing data patterns. In this article, we follow incident cases of end-stage renal disease to examine the effect on all-cause mortality of starting treatment with transplant, so-called pre-emptive kidney transplantation, vs starting with dialysis possibly followed by delayed transplantation. The question is relatively simple: which start-off treatment is expected to bring the best survival for a target population? To address it, we emulate a target trial drawing on the long term Swedish Renal Registry, where a growing common set of baseline covariates was measured nationwide. Several lessons are learned which pertain to long term disease registers more generally. With characteristics of cases and versions of treatment evolving over time, informative censoring is already introduced in unadjusted Kaplan-Meier curves. This leads to misrepresented survival chances in observed treatment groups. The resulting biased treatment association may be aggravated upon implementing IPW for treatment. Aware of additional challenges, we further recall how similar studies to date have selected patients into treatment groups based on events occurring post treatment initiation. Our study reveals the dramatic impact of resulting immortal time bias combined with other typical features of long-term incident disease registers, including missing covariates during the early phases of the register. We discuss feasible ways of accommodating these features when targeting relevant estimands, and demonstrate how more than one causal question can be answered relying on the no unmeasured baseline confounders assumption.
We estimated the degree to which language used in the high profile medical/public health/epidemiology literature implied causality using language linking exposures to outcomes and action recommendations; examined disconnects between language and recommendations; identified the most common linking phrases; and estimated how strongly linking phrases imply causality. We searched and screened for 1,170 articles from 18 high-profile journals (65 per journal) published from 2010-2019. Based on written framing and systematic guidance, three reviewers rated the degree of causality implied in abstracts and full text for exposure/outcome linking language and action recommendations. Reviewers rated the causal implication of exposure/outcome linking language as None (no causal implication) in 13.8%, Weak 34.2%, Moderate 33.2%, and Strong 18.7% of abstracts. The implied causality of action recommendations was higher than the implied causality of linking sentences for 44.5% or commensurate for 40.3% of articles. The most common linking word in abstracts was "associate" (45.7%). Reviewers’ ratings of linking word roots were highly heterogeneous; over half of reviewers rated "association" as having at least some causal implication. This research undercuts the assumption that avoiding "causal" words leads to clarity of interpretation in medical research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.