BackgroundSnakebite envenoming is a neglected public health challenge that affects mostly economically deprived communities who inhabit tropical regions. In these regions, snakebite incidence data is not always reliable, and access to health care is scare and heterogeneous. Thus, addressing the problem of snakebite effectively requires an understanding of how spatial heterogeneity in snakebite is associated with human demographics and snakes’ distribution. Here, we use a mathematical model to address the determinants of spatial heterogeneity in snakebite and we estimate snakebite incidence in a tropical country such as Costa Rica.Methods and findingsWe combined a mathematical model that follows the law of mass action, where the incidence is proportional to the exposed human population and the venomous snake population, with a spatiotemporal dataset of snakebite incidence (Data from year 1990 to 2007 for 193 districts) in Costa Rica. This country harbors one of the most dangerous venomous snakes, which is the Terciopelo (Bothrops asper, Garman, 1884). We estimated B. asper distribution using a maximum entropy algorithm, and its abundance was estimated based on field data. Then, the model was adjusted to the data using a lineal regression with the reported incidence. We found a significant positive correlation (R2 = 0.66, p-value < 0.01) between our estimation and the reported incidence, suggesting the model has a good performance in estimating snakebite incidence.ConclusionsOur model underscores the importance of the synergistic effect of exposed population size and snake abundance on snakebite incidence. By combining information from venomous snakes’ natural history with census data from rural populations, we were able to estimate snakebite incidence in Costa Rica. The model was able to fit the incidence data at fine administrative scale (district level), which is fundamental for the implementation and planning of management strategies oriented to reduce snakebite burden.
Background Snakebite envenoming is a neglected tropical disease affecting deprived populations, and its burden is underestimated in some regions where patients prefer using traditional medicine, case reporting systems are deficient, or health systems are inaccessible to at-risk populations. Thus, the development of strategies to optimize disease management is a major challenge. We propose a framework that can be used to estimate total snakebite incidence at a fine political scale. Methodology/Principal findings First, we generated fine-scale snakebite risk maps based on the distribution of venomous snakes in Colombia. We then used a generalized mixed-effect model that estimates total snakebite incidence based on risk maps, poverty, and travel time to the nearest medical center. Finally, we calibrated our model with snakebite data in Colombia from 2010 to 2019 using the Markov-chain-Monte-Carlo algorithm. Our results suggest that 10.19% of total snakebite cases (532.26 yearly envenomings) are not reported and these snakebite victims and do not seek medical attention, and that populations in the Orinoco and Amazonian regions are the most at-risk and show the highest percentage of underreporting. We also found that variables such as precipitation of the driest month and mean temperature of the warmest quarter influences the suitability of environments for venomous snakes rather than absolute temperature or rainfall. Conclusions/Significance Our framework permits snakebite underreporting to be estimated using data on snakebite incidence and surveillance, presence locations for the most medically significant venomous snake species, and openly available information on population size, poverty, climate, land cover, roads, and the locations of medical centers. Thus, our algorithm could be used in other countries to estimate total snakebite incidence and improve disease management strategies; however, this framework does not serve as a replacement for a surveillance system, which should be made a priority in countries facing similar public health challenges.
Snakebite envenoming is a Neglected Tropical Disease affecting mainly deprived populations. Its burden is normally underestimated because patients prefer to seek for traditional medicine. Thus, applying strategies to optimize disease' management and treatment delivery is difficult. We propose a framework to estimate snakebite incidence at a fine political scale based on available data, testing it in Colombia. First, we produced snakebite fine-scale risk maps based on the most medically important venomous snake species (Bothrops asper and B. atrox). We validated them with reported data in the country. Then, we proposed a generalized mixed effect model that estimates total incidence based on produced risk maps, poverty indexes, and an accessibility score that reflects the struggle to reach a medical center. Finally, we calibrated our model with national snakebite reported data from 2010 to 2019 using a Markov chain Monte Carlo (MCMC) algorithm and estimated underreporting based on the total incidence estimation. Our results suggest that 10.3% of total snakebite cases are not reported in Colombia and do not seek medical attention. The Orinoco and Amazonian regions (east of Colombia) share a high snakebite risk with a high underreporting. Our work highlights the importance of multidisciplinary approaches to face snakebite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.