Purpose: There is an interest in the discovery of biopharmaceuticals, which are well tolerated and which potentiate the action of anthracyclines and taxanes in breast cancer therapy. Experimental Design: We have produced a recombinant fusion protein, composed of the human antibody fragment scFv(F16) fused to human interleukin-2 (F16-IL2), and tested its therapeutic performance in the MDA-MB-231xenograft model of human breast cancer. The F16 antibody is specific to the alternatively spliced A1 domain of tenascin-C, which is virtually undetectable in normal tissues but is strongly expressed in the neovasculature and stroma of breast cancer. Results: When used as monotherapy, F16-IL2 displayed a strikingly superior therapeutic benefit compared with unconjugated recombinant IL-2. The administration of doxorubicin either before (8 days, 24 h, or 2 h) or simultaneously with the injection of F16-IL2 did not decrease the accumulation of immunocytokine in the tumor as measured by quantitative biodistribution analysis. Therapy experiments, featuring five once per week coadministrations of 20 Ag F16-IL2 and doxorubicin, showed a statistically significant reduction of tumor growth rate and prolongation of survival at a 4 mg/kg doxorubicin dose but not at a1mg/kg dose. By contrast, combination of F16-IL2 with paclitaxel (5 and 1 mg/kg) exhibited a significant therapeutic benefit compared with paclitaxel alone at both dose levels. F16-IL2, alone or in combination with doxorubicin, was well tolerated in cynomolgus monkeys at doses equivalent to the ones now used in clinical studies.Conclusions: F16-IL2 may represent a new useful biopharmaceutical for the treatment of breast cancer.Breast cancer is a major cause of morbidity and mortality in women ages >45 years, especially in the United States, where every year >180,000 new cases are diagnosed and >45,000 women die of the disease (1). The survival of all patients with metastatic breast cancer varies according to certain prognostic factors: a long disease-free interval after primary therapy is more favorable than a short interval, nonvisceral sites of metastasis carry a better prognosis than visceral sites, and a single site of metastasis is more favorable than multiple sites. Whereas tamoxifen and aromatase inhibitors are frequently used for the treatment of estrogen receptor-positive patients, anthracyclines and taxanes represent standard elements in the adjuvant treatment of breast cancer and for the therapy of metastatic disease. For patients with metastases recurring after primary breast treatment, median survival is f2 years. There is a clear need for better therapeutic options both in the adjuvant and in the metastatic breast cancer setting (2, 3).The selective delivery of bioactive agents (e.g., cytotoxic drugs, radionuclides, or immunostimulatory cytokines) at the tumor site, while sparing normal tissues, represents one of the most promising avenues for the development of anticancer therapies with unprecedented efficacy and tolerability (2, 3). Markers of angi...
SummaryThe aims of this work were to obtain a human antibody against the tumour-associated antigen tenascin-C (TNC) and to compare the yield and quality of plant-produced antibody in either stable transgenics or using a transient expression system. To this end, the characterization of a full-sized human immunoglobulin G (IgG) [monoclonal antibody H10 (mAb H10)], derived from a selected single-chain variable fragment (scFv) and produced in plants, is presented. The human mAb gene was engineered for plant expression, and Nicotiana tabacum transgenic lines expressing both heavy (HC) and light (LC) chain were obtained and evaluated for antibody expression levels, in vivo assembly and functionality.Affinity-purified H10 from transgenics (yield, 0.6-1.1 mg/kg fresh weight) revealed that more than 90% of HC was specifically degraded, leading to the formation of functional antigen-binding fragments (Fab). Consequently, H10 was transiently expressed in Nicotiana benthamiana plants through an Agrobacterium -mediated gene-transfer system. Moreover, the use of the p19 silencing suppressor gene from artichoke mottled crinkle virus raised antibody expression levels by an order of magnitude (yields of purified H10, 50-100 mg/kg fresh weight). Approximately 75% of purified protein consisted of full-sized antibody functionally binding to TNC ( K D = 14 n M ), and immunohistochemical analysis on tumour tissues revealed specific accumulation around tumour blood vessels. The data indicate that the purification yields of mAb H10, using a transient expression system boosted by the p19 silencing suppressor, are exceptionally high when compared with the results reported previously, providing a technique for the over-expression of anticancer mAbs by a rapid, cost-effective, molecular farming approach.
The isolation of mammalian cell lines capable of high-yield expression of recombinant antibodies is typically performed by screening multiple individual clones by limiting dilution techniques. A number of experimental strategies have recently been devised to identify high-expressing clones, but protocols are often difficult to implement, time consuming, costly and limited in terms of number of clones which can be screened. In this article, we describe new vectors for the expression of recombinant antibodies in IgG format and in other formats, based on the single-chain Fv module, as well as a high-throughput screening procedure, based on the direct staining of antibodies transiting the membrane of a stably transfected cell, followed by preparative sorting using a high-speed cell sorter. This procedure allows, in one step, to deposit single cells into individual wells of a 96-well microtiter plate (thus facilitating cloning) and to preferentially recover those rare cell populations which express dramatically higher levels of recombinant antibody. Using cell cultures followed by affinity purification techniques, we could confirm that the new vectors and the new screening procedure reliably yield high-expression clones and homogenous protein preparations. We expect that these techniques should find broad applicability for both academic and industrial antibody engineering research.
<div>Abstract<p><b>Purpose:</b> There is an interest in the discovery of biopharmaceuticals, which are well tolerated and which potentiate the action of anthracyclines and taxanes in breast cancer therapy.</p><p><b>Experimental Design:</b> We have produced a recombinant fusion protein, composed of the human antibody fragment scFv(F16) fused to human interleukin-2 (F16-IL2), and tested its therapeutic performance in the MDA-MB-231 xenograft model of human breast cancer. The F16 antibody is specific to the alternatively spliced A1 domain of tenascin-C, which is virtually undetectable in normal tissues but is strongly expressed in the neovasculature and stroma of breast cancer.</p><p><b>Results:</b> When used as monotherapy, F16-IL2 displayed a strikingly superior therapeutic benefit compared with unconjugated recombinant IL-2. The administration of doxorubicin either before (8 days, 24 h, or 2 h) or simultaneously with the injection of F16-IL2 did not decrease the accumulation of immunocytokine in the tumor as measured by quantitative biodistribution analysis. Therapy experiments, featuring five once per week coadministrations of 20 μg F16-IL2 and doxorubicin, showed a statistically significant reduction of tumor growth rate and prolongation of survival at a 4 mg/kg doxorubicin dose but not at a 1 mg/kg dose. By contrast, combination of F16-IL2 with paclitaxel (5 and 1 mg/kg) exhibited a significant therapeutic benefit compared with paclitaxel alone at both dose levels. F16-IL2, alone or in combination with doxorubicin, was well tolerated in cynomolgus monkeys at doses equivalent to the ones now used in clinical studies.</p><p><b>Conclusions:</b> F16-IL2 may represent a new useful biopharmaceutical for the treatment of breast cancer.</p></div>
<div>Abstract<p><b>Purpose:</b> There is an interest in the discovery of biopharmaceuticals, which are well tolerated and which potentiate the action of anthracyclines and taxanes in breast cancer therapy.</p><p><b>Experimental Design:</b> We have produced a recombinant fusion protein, composed of the human antibody fragment scFv(F16) fused to human interleukin-2 (F16-IL2), and tested its therapeutic performance in the MDA-MB-231 xenograft model of human breast cancer. The F16 antibody is specific to the alternatively spliced A1 domain of tenascin-C, which is virtually undetectable in normal tissues but is strongly expressed in the neovasculature and stroma of breast cancer.</p><p><b>Results:</b> When used as monotherapy, F16-IL2 displayed a strikingly superior therapeutic benefit compared with unconjugated recombinant IL-2. The administration of doxorubicin either before (8 days, 24 h, or 2 h) or simultaneously with the injection of F16-IL2 did not decrease the accumulation of immunocytokine in the tumor as measured by quantitative biodistribution analysis. Therapy experiments, featuring five once per week coadministrations of 20 μg F16-IL2 and doxorubicin, showed a statistically significant reduction of tumor growth rate and prolongation of survival at a 4 mg/kg doxorubicin dose but not at a 1 mg/kg dose. By contrast, combination of F16-IL2 with paclitaxel (5 and 1 mg/kg) exhibited a significant therapeutic benefit compared with paclitaxel alone at both dose levels. F16-IL2, alone or in combination with doxorubicin, was well tolerated in cynomolgus monkeys at doses equivalent to the ones now used in clinical studies.</p><p><b>Conclusions:</b> F16-IL2 may represent a new useful biopharmaceutical for the treatment of breast cancer.</p></div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.