The rotational spectrum of the weakly bound complex pentafluoropyridine·water has been investigated with pulsed jet Fourier transform microwave spectroscopy. From the analysis of the rotational parameters of the parent species and of three water isotopologues, the structural arrangement of the adduct has been unambiguously established. The results show that the full ring fluorination of pyridine has a dramatic effect on its binding properties: It inverts the electron density distribution above the ring, creating a π-hole, with respect to the typical π-cloud of benzene and pyridine. In the complex the water moiety lies above the aromatic ring with the oxygen lone pairs pointing toward its center. This lone pair···π-hole interaction stabilizes the adduct, and it is more stable than the in-plane O-H···N hydrogen bond normally found in the complexes involving nitrogen heterocyclic aromatic rings. Evidence of a large amplitude motion involving the weakly bound water molecule has also been observed and discussed.
The rotational spectra of the 1:1 formic acid-carbon dioxide molecular complex and of its monodeuterated isotopologues are analysed in the 6.5-18.5 and 59.6-74.4 GHz frequency ranges using a pulsed jet Fourier transform microwave spectrometer and a free-jet absorption millimetre wave spectrometer, respectively. Precise values of the rotational and quartic centrifugal distortion constants are obtained from the measured frequencies, and quadrupole coupling constants are determined from the deuterium hyperfine splittings. Structural parameters are estimated from the moments of inertia and their differences among isotopologues: the complex has a planar structure with the two subunits held together by a HC(O)OH⋅⋅⋅O=C=O (2.075 Å) and a HC(OH)O⋅⋅⋅CO2 (2.877 Å) interactions. The ab initio intermolecular binding energy, obtained at the counterpoise corrected MP2/aug-cc-pVTZ level of calculation, is De =17 kJ mol(-1).
The conformational landscapes of β-ionone and two mutants (α-ionone and β-damascone) have been analyzed by means of state-of-the-art rotational spectroscopy and quantum-chemical calculations. The experiments performed at high resolution and sensitivity have provided a deep insight into their conformational spaces, assigning more than 8000 transitions corresponding to the rotational structures of 54 different species (3 isomers, 14 conformers, and 40 isotopologues). Methyl internal rotation dynamics were also observed and analyzed. The work proved the great flexibility of β-ionone due to its flatter potential energy surface. This feature confers on β-ionone a wider ability to interconvert between conformers with rather similar energies with respect to its mutants, allowing the retinal ligand to better adapt inside the binding pocket.
The weakly bound 1:1 complex between acrylonitrile (CH2═CHCN) and water has been characterized spectroscopically in the millimeter wave range (59.6-74.4 GHz) using a Free Jet Absorption Millimeter Wave spectrometer. Precise values of the rotational and quartic centrifugal distortion constants have been obtained from the measured frequencies of the normal and isotopically substituted water moiety (DOH, DOD, H(18)OH). Structural parameters have been estimated from the rotational constants and their differences among isotopologues: the complex has a planar structure with the two subunits held together by a O-H···N (2.331(3) Å) and a C-H···O (2.508(4) Å) interaction. The ab initio intermolecular binding energy, obtained at the counterpoise corrected MP2/aug-cc-pVTZ level of calculation, is De = 24.4 kJ mol(-1).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.