The novel coronavirus SARS-CoV-2 causes COVID-19, a highly pathogenic viral infection threatening millions. The majority of the individuals infected are asymptomatic or mildly symptomatic showing typical clinical signs of common cold. However, approximately 20% of the patients can progress to acute respiratory distress syndrome (ARDS), evolving to death in about 5% of cases. Recently, angiotensin-converting enzyme 2 (ACE2) has been shown to be a functional receptor for virus entry into host target cells. The upregulation of ACE2 in patients with comorbidities may represent a propensity for increased viral load and spreading of infection to extrapulmonary tissues. This systemic infection is associated with higher neutrophil to lymphocyte ratio in infected tissues and high levels of pro-inflammatory cytokines leading to an extensive microthrombus formation with multiorgan failure. Herein we investigated whether SARS-CoV-2 can stimulate extracellular neutrophils traps (NETs) in a process called NETosis. We demonstrated for the first time that SARS-CoV-2 in fact is able to activate NETosis in human neutrophils. Our findings indicated that this process is associated with increased levels of intracellular Reactive Oxygen Species (ROS) in neutrophils. The ROS-NET pathway plays a role in thrombosis formation and our study suggest the importance of this target for therapy approaches against disease.
COVID-19 can progress to severe pneumonia with respiratory failure and is aggravated by the deregulation of the immune system causing an excessive inflammation including the cytokine storm. We herein report that severe acutely infected patients have high levels of both type-1 and type-2 cytokines. Our results show abnormal cytokine levels upon T cell stimulation, in a non-polarized profile. Furthermore, our findings indicate that this hyperactive cytokine response is associated with a significantly increased frequency of late-differentiated T cells with particular phenotype of effector exhausted/senescent CD28 -CD57 + cells. Interestingly, we demonstrated for the first time an increased frequency of CD3 +CD4 +CD28 -CD57 + T cells with expression of programmed death 1 (PD-1), one of the hallmarks of T cell exhaustion. These findings reveal that COVID-19 is associated with acute immunodeficiency, especially within the CD4 + T cell compartment and points to possible mechanisms of loss of clonal repertoire and susceptibility to viral relapse and reinfection events.
Coronavirus disease 2019 (COVID-19) can progress to severe pneumonia with respiratory failure and is aggravated by the deregulation of the immune system causing an excessive inflammation including the cytokine storm. Since 2019, several studies regarding the interplay between autoimmune diseases and COVID-19 infections is increasing all over the world. In addition, thanks to new scientific findings, we actually know better why certain conditions are considered a higher risk in both situations. There are instances when having an autoimmune disease increases susceptibility to COVID-19 complications, such as when autoantibodies capable of neutralizing type I IFN are present, and other situations in which having COVID-19 infection precedes the appearance of various autoimmune and autoinflammatory diseases, including multisystem inflammatory syndrome in children (MIS-C), Guillain-Barré syndrome, and Autoimmune haemolytic anaemia (AIHA), thus, adding to the growing mystery surrounding the SARS-CoV-2 virus and raising questions about the nature of its link with autoimmune and autoinflammatory sequelae. Herein, we discuss the role of host and virus genetics and some possible immunological mechanisms that might lead to the disease aggravation.
COVID-19 is a disease caused by the novel SARS-CoV-2 coronavirus, originally classified as a severe acute respiratory syndrome coronavirus (SARS-CoV). The most severe cases of COVID-19 can progress to severe pneumonia with respiratory failure, septicemia, multiple organ failure and death. The severity of the disease is aggravated by the deregulation of the immune system causing an excessive initial inflammation including the cytokine storm, compring interleukins characteristic of the T-dependent adaptive response. In the present study we show that severe patients have high levels of T helper type-1 and type-2 cytokines, as well as VGEF. Furthermore, our show abnormal cytokine levels upon T-cell mitogen stimulation, in a non-polarized response profile. This response is not specific, given that the stimulus with the heterologous tuberculin antigen was able to induce high levels of cytokines compared to healthy controls, including the vascular endothelial growth factor VEGF, which promotes neoangiogenesis in physiological and pathophysiological conditions, caused by tissue hypoxia, and involved in a clonal exhaustion program in T cells. This can be decisive given our findings demonstrating for the first time a significantly increased frequency of late-differentiated CD8+ T cells characterized by critically shortened telomeres with particular phenotype (CD57+CD28-) in severe acute COVID-19 infection. These findings reveal that severe COVID-19 is associated with senescence of T cells, especially within the CD8+ T cell compartment and points to possible mechanisms of loss of clonal repertoire and susceptibility to recurrences of COVID-19 symptoms, due to viral relapse and reinfection events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.