Introduction: Buildings are responsible for 39 % of CO2 emissions in the world and have the largest consumption of natural resources. The concept of Circular Economy can be used as an approach for mitigating environmental impact in this sector. Circular economy in the built environment can be implemented on a building level through preservation instead of demolition and new construction. In order to assess the environmental impact, the Life Cycle Assessment (LCA) framework can be used. The purpose of this study is to expand the existing building-LCA framework from the CEN TC 350 standards to include existing buildings on the building site in the assessment of buildings and demonstrate the framework on a building case. This is done in order to include the environmental benefits from preserving the building materials that already exists on the building site. Methods: The framework is developed based on the existing standard for LCA for buildings and the framework is demonstrated on an existing school building. Results: The study develops and demonstrates a framework for performing LCA on buildings when an existing building is the starting point. The framework includes scenarios for 1) preservation, 2) renovation and 3) demolition and new construction. The case building shows the importance of including demolition of the existing building as it accounts for 12 % of impacts. It furthermore illustrates how the scenarios can be compared, especially in terms of when the impacts occur, i.e. that most impacts from scenario 3) happen today, which can be a challenge with a limited climate budget. Conclusion: The developed framework allow us to broaden the LCA scope to include existing buildings in the assessment such as demolition of existing buildings on building site. This makes it possible to evaluate the circular strategies on building level using LCA to the benefit of building designers, clients and policy makers.
Buildings play a vital role in reaching the targets stated by the Intergovernmental Panel on Climate Change to limit global warming to 1.5 degrees. Increasing the use of wood in construction is a proposed upcoming strategy to reduce the embodied greenhouse gas emissions of buildings. This study examines existing life cycle assessments of wooden buildings. The aim is to investigate embodied greenhouse gas emission results reported, as well as methodological approaches applied in existing literature. The study applies the protocol for Systematic Literature Reviews and finds 79 relevant papers. From the final sample, the study analyses 226 different scenarios in-depth in terms of embodied emissions, life cycle assessment method, life cycle inventory modelling and biogenic carbon approach. The analysis shows that the average reported values of embodied greenhouse gas emissions of wooden buildings are one-third to half of the embodied emissions reported from buildings in general. Additionally, from the analysis of the final sample we find that the majority of wooden building life cycle assessments apply similar methods and often leave out biogenic carbon from the assessment or simply do not declare it. This implies that the focus on variability in the different methods applied in wooden building life cycle assessments needs to be increased to establish the relationship between methodological choices and embodied emissions of wooden buildings. Further, transparency and conformity in biogenic carbon accounting in life cycle assessments is essential to enhance comparability between life cycle assessment studies and to avoid distortions in embodied GHG emission results.
The use of wood and timber products in the construction of buildings is repeatedly pointed towards as a mean for lowering the environmental footprint. With several countries preparing regulation for life cycle assessment of buildings, practitioners from industry will presumably look to the pool of data on wood products found in environmental product declarations (EPDs). However, the EPDs may vary broadly in terms of reporting and results. This study provides a comprehensive review of 81 third-party verified EN 15804 EPDs of cross laminated timber (CLT), glulam, laminated veneer lumber (LVL) and timber. The 81 EPDs represent 86 different products and 152 different product scenarios. The EPDs mainly represent European production, but also North America and Australia/New Zealand productions are represented. Reported global warming potential (GWP) from the EPDs vary within each of the investigated product categories, due to density of the products and the end-of-life scenarios applied. Median results per kg of product, excluding the biogenic CO2, are found at 0.26, 0.24, and 0.17 kg CO2e for CLT, glulam, and timber, respectively. Results further showed that the correlation between GWP and other impact categories is limited. Analysis of the inherent data uncertainty showed to add up to 卤41% to reported impacts when assessed with an uncertainty method from the literature. However, in some of the average EPDs, even larger uncertainties of up to 90% for GWP are reported. Life cycle assessment practitioners can use the median values from this study as generic data in their assessments of buildings. To make the EPDs easier to use for practitioners, a more detailed coordination between EPD programs and their product category rules is recommended, as well as digitalization of EPD data.
The concept of circular economy has been introduced as a strategy to reduce the greenhouse gas (GHG) emissions from buildings and mitigate climate change. Although many innovative circular solutions exist, the business model is challenged by a lack of environmental data on the circular solutions, and thus the potential benefits are not verifiable. The study assesses the embodied GHG emissions of five circular building elements/components. Circular solutions are compared with conventional solutions to ascertain whether the business model has the potential to reduce GHG emissions. The GHG emissions are quantified using life-cycle assessment (LCA) for five circulareconomy and three conventional building elements/components. The environmental data show that circular building components have the potential to reduce GHG emissions. However, there is a risk of increasing the GHG emissions when compared with conventional solutions, emphasising the need for standardised environmental data. Lastly, the study identifies logistic, economic, technological and regulatory barriers that prevent complete implementation of circular economy. Practice relevance Standardised environmental data on building elements/components are needed to support decisionmaking at local and national levels. Uncertainties about waste from manufacture and transport in the production stage can affect the environmental potential to such an extent that the benefits from introducing circular economy are lost. One central barrier is identified that prevents complete implementation of the circular economy in buildings; the industry is not geared to support a steady supply of some circular building elements/components. In general, it is clear that the implementation of circular economy requires the identification of environmental, logistical, economic, technological and regulatory concerns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.