The intensity of the heaviest extreme precipitation events is known to increase with global warming. How often such events occur in a warmer world is however less well established, and the combined effect of changes in frequency and intensity on the total amount of rain falling as extreme precipitation is much less explored, in spite of potentially large societal impacts. Here, we employ observations and climate model simulations to document strong increases in the frequencies of extreme precipitation events occurring on decadal timescales. Based on observations we find that the total precipitation from these intense events almost doubles per degree of warming, mainly due to changes in frequency, while the intensity changes are relatively weak, in accordance to previous studies. This shift towards stronger total precipitation from extreme events is seen in observations and climate models, and increases with the strength – and hence the rareness – of the event. Based on these results, we project that if historical trends continue, the most intense precipitation events observed today are likely to almost double in occurrence for each degree of further global warming. Changes to extreme precipitation of this magnitude are dramatically stronger than the more widely communicated changes to global mean precipitation.
We investigate the climate response to increased concentrations of black carbon (BC), as part of the Precipitation Driver Response Model Intercomparison Project (PDRMIP). A tenfold increase in BC is simulated by nine global coupled‐climate models, producing a model median effective radiative forcing of 0.82 (ranging from 0.41 to 2.91) W m−2, and a warming of 0.67 (0.16 to 1.66) K globally and 1.24 (0.26 to 4.31) K in the Arctic. A strong positive instantaneous radiative forcing (median of 2.10 W m−2 based on five of the models) is countered by negative rapid adjustments (−0.64 W m−2 for the same five models), which dampen the total surface temperature signal. Unlike other drivers of climate change, the response of temperature and cloud profiles to the BC forcing is dominated by rapid adjustments. Low‐level cloud amounts increase for all models, while higher‐level clouds are diminished. The rapid temperature response is particularly strong above 400 hPa, where increased atmospheric stabilization and reduced cloud cover contrast the response pattern of the other drivers. In conclusion, we find that this substantial increase in BC concentrations does have considerable impacts on important aspects of the climate system. However, some of these effects tend to offset one another, leaving a relatively small median global warming of 0.47 K per W m−2—about 20% lower than the response to a doubling of CO2. Translating the tenfold increase in BC to the present‐day impact of anthropogenic BC (given the emissions used in this work) would leave a warming of merely 0.07 K.
As the global temperature increases with changing climate, precipitation rates and patterns are affected through a wide range of physical mechanisms. The globally averaged intensity of extreme precipitation also changes more rapidly than the globally averaged precipitation rate. While some aspects of the regional variation in precipitation predicted by climate models appear robust, there is still a large degree of intermodel differences unaccounted for. Individual drivers of climate change initially alter the energy budget of the atmosphere, leading to distinct rapid adjustments involving changes in precipitation. Differences in how these rapid adjustment processes manifest themselves within models are likely to explain a large fraction of the present model spread and better quantifications are needed to improve precipitation predictions. Here, the authors introduce the Precipitation Driver and Response Model Intercomparison Project (PDRMIP), where a set of idealized experiments designed to understand the role of different climate forcing mechanisms were performed by a large set of climate models. PDRMIP focuses on understanding how precipitation changes relating to rapid adjustments and slower responses to climate forcings are represented across models. Initial results show that rapid adjustments account for large regional differences in hydrological sensitivity across multiple drivers. The PDRMIP results are expected to dramatically improve understanding of the causes of the present diversity in future climate projections.
Purpose of Review Some aerosols absorb solar radiation, altering cloud properties, atmospheric stability and circulation dynamics, and the water cycle. Here we review recent progress towards global and regional constraints on aerosol absorption from observations and modeling, considering physical properties and combined approaches crucial for understanding the total (natural and anthropogenic) influences of aerosols on the climate. Recent Findings We emphasize developments in black carbon absorption alteration due to coating and ageing, brown carbon characterization, dust composition, absorbing aerosol above cloud, source modeling and size distributions, and validation of high-resolution modeling against a range of observations. Summary Both observations and modeling of total aerosol absorption, absorbing aerosol optical depths and single scattering albedo, as well as the vertical distribution of atmospheric absorption, still suffer from uncertainties and unknowns significant for climate applications. We offer a roadmap of developments needed to bring the field substantially forward.
ABSTRACT:In the present study, surface solar radiation data from 11 stations in northwestern Europe and the European Arctic are presented in the context of the ongoing discussion on global dimming and global brightening. The surface solar radiation records are compared to records of cloud cover, and to qualitative information on aerosol concentrations and atmospheric circulation patterns, in order to explain the temporal variations.Through simple statistical analyses, we examine annual trends as well as trends for individual months, and compare the results between the stations. Comparisons are also made between different time periods within the records. We find that surface solar radiation changes in the region considered, even at the remote arctic stations, correspond well with trends found in global studies, with a significant decrease from the 1950s to the 1980s, followed by a slight increase in recent years. At stations that stand out from the general pattern, the deviations can be explained by variations in cloud cover in most cases.There has been a general tendency to attribute the majority of the observed surface solar radiation trends to aerosol changes caused by changes in anthropogenic emissions. This study stresses the importance of the contribution of clouds and the atmospheric circulation to global dimming and global brightening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.