Lung cancer is the leading cause of cancer deaths worldwide. Clinical staging classification is generally insufficient to provide a reliable prognosis, particularly for early stages. In addition, prognostic factors are therefore needed to better forecast life expectancy and optimize adjuvant therapeutic strategy. Recent evidence indicates that alterations of the DNA replication program contribute to neoplasia from its early stages and that cancer cells are frequently exposed to endogenous replication stress. We therefore hypothesized that genes involved in the replication stress response may represent an under-explored source of biomarkers. Expressions of 77 DNA replication-associated genes implicated in different aspects of chromosomal DNA replication, including licensing, firing of origins, elongation, replication fork maintenance and recovery, lesion bypass and post-replicative repair were determined in primary tumors and adjacent normal tissues from 93 patients suffering from early- or mid-stage non-small cell lung cancer (NSCLC). We then investigated a statistically significant interaction between gene expressions and survival of early-stage NSCLC patients.The expression of five genes, that is, POLQ, PLK1, RAD51, CLASPIN and CDC6 was associated with overall, disease-free and relapse-free survival. The expression levels are independent of treatment and stage classification. Except RAD51, their prognostic role on survival persists after adjustment on age, sex, treatment, stage classification and conventional proliferation markers, with a hazard ratio of 36.3 for POLQ (95%CI 2.6–517.4, P=0.008), 23.5 for PLK1 (95%CI 1.9–288.4, P=0.01), 20.7 for CLASPIN (95%CI 1.5–275.9, P=0.02) and 18.5 for CDC6 (95%CI 1.3–267.4, P=0.03). We also show that a five-gene signature including POLQ, PLK1, RAD51, CLASPIN and CDC6 separates patients into low- and high-risk groups, with a hazard ratio of 14.3 (95% CI 5.1–40.3, P<0.001). This ‘replication stress' metamarker may be a reliable predictor of survival for NSCLC, and may also help understand the molecular mechanisms underlying tumor progression.
Background: Electrotransfer of plasmid DNA into skeletal muscle is a promising strategy for the delivery of therapeutic molecules targeting various muscular diseases, cancer and lower-limb ischemia. Internal Ribosome Entry Sites (IRESs) allow co-expression of proteins of interest from a single transcriptional unit. IRESs are RNA elements that have been found in viral RNAs as well as a variety of cellular mRNAs with long 5' untranslated regions. While the encephalomyocarditis virus (EMCV) IRES is often used in expression vectors, we have shown that the FGF-1 IRES is equally active to drive short term transgene expression in mouse muscle. To compare the ability of the FGF-1 IRES to drive long term expression against the EMCV and FGF-2 IRESs, we performed analyses of expression kinetics using bicistronic vectors that express the bioluminescent renilla and firefly luciferase reporter genes. Long term expression of bicistronic vectors was also compared to that of monocistronic vectors. Bioluminescence was quantified ex vivo using a luminometer and in vivo using a CCD camera that monitors luminescence within live animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.