The Gram-positive intracellular pathogen Listeria monocytogenes is endowed with 17 sets of genes encoding two-component systems. L. monocytogenes is closely related to the Grampositive model bacterium Bacillus subtilis, in which we have shown previously that the DegS/ DegU system plays a central role in controlling stationary phase adaptive responses, including degradative enzyme synthesis and competence. Although an orthologue of the DegU response regulator is present in L. monocytogenes, the gene encoding the cognate DegS kinase is conspicuously absent. We have inactivated the degU gene of L. monocytogenes and shown that DegU negatively regulates its own synthesis. Direct binding of L. monocytogenes DegU to its own promoter region was shown in vitro by gel mobility shift and DNase I footprinting experiments. DegU was also shown to bind upstream from the motB operon, which also encodes the GmaR anti-repressor of flagellar synthesis. In contrast to the situation in B. subtilis, DegU was shown to be essential for flagellar synthesis and bacterial motility in L. monocytogenes and is cotranscribed with the yviA gene located downstream. We also show that DegU is required for growth at high temperatures, adherence to plastic surfaces and the formation of efficient biofilms by L. monocytogenes. DegU plays a role in virulence of L. monocytogenes as well: in a murine intravenous infection model, an 11-fold increase in LD 50 was observed for the degU mutant. Taken together, our results indicate that despite the lack of the DegS kinase, DegU is fully functional as an orphan response regulator, and plays a central role in controlling several crucial adaptive responses in L. monocytogenes.
SummaryDegU is considered to be an orphan response regulator in Listeria monocytogenes since the gene encoding the cognate histidine kinase DegS is absent from the genome. We have previously shown that DegU is involved in motility, chemotaxis and biofilm formation and contributes to L. monocytogenes virulence. Here, we have investigated the role of DegU phosphorylation in Listeria and shown that DegS of Bacillus subtilis can phosphorylate DegU of L. monocytogenes in vitro. We introduced the B. subtilis degS gene into L. monocytogenes, and showed that this leads to highly increased expression of motility and chemotaxis genes, in a DegU-dependent fashion. We inactivated the predicted phosphorylation site of DegU by replacing aspartate residue 55 with asparagine and showed that this modified protein (DegU D55N) is no longer phosphorylated by DegS in vitro. We show that although the unphosphorylated form of DegU retains much of its activity in vivo, expression of motility and chemotaxis genes is lowered in the degUD55N mutant. We also show that the small-molecular-weight metabolite acetyl phosphate is an efficient phosphodonor for DegU in vitro and our evidence suggests this is also true in vivo. Indeed, a L. monocytogenes Dpta DackA mutant that can no longer synthesize acetyl phosphate was found to be strongly affected in chemotaxis and motility gene expression and biofilm formation. Our findings suggest that phosphorylation by acetyl phosphate could play an important role in modulating DegU activity in vivo, linking its phosphorylation state to the metabolic status of L. monocytogenes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.