The resistance of hypoxic cells to conventional chemotherapy is well documented. Using both adenovirus-mediated gene delivery and small molecules targeting hypoxia-inducible factor-1 (HIF-1), we evaluated the impact of HIF-1 inhibition on the sensitivity of hypoxic tumor cells to etoposide. The genetic therapy exploited a truncated HIF-1␣ protein that acts as a dominant-negative HIF-1␣ (HIF-1␣-no-TAD). Its functionality was validated in six human tumor cell lines using HIF-1 reporter assays. An EGFP-fused protein demonstrated that the dominant-negative HIF-1␣ was nucleus-localized and constitutively expressed irrespective of oxygen tension. The small molecules studied were quinocarmycin monocitrate (KW2152), its analog 7-cyanoquinocarcinol (DX-52-1), and topotecan. DX-52-1 and topotecan have been previously established as HIF-1 inhibitors. HT1080 and HCT116 cells were treated with either AdHIF-1␣-no-TAD or nontoxic concentrations (0.1 M; ϽIC 10 ) of KW2152 and DX-52-1 and exposed to etoposide in air or anoxia (Ͻ0.01% oxygen). Topotecan inhibited HIF-1 activity only at cytotoxic concentrations and was not used in the combination study. Etoposide IC 50 values in anoxia were 3-fold higher than those in air for HT1080 (2.2 Ϯ 0.3 versus 0.7 Ϯ 0.2 M) and HCT116 (9 Ϯ 4 versus 3 Ϯ 2 M) cells. KW2152 and DX-52-1 significantly reduced the anoxic etoposide IC 50 in HT1080 cells, whereas only KW2152 yielded sensitization in HCT116 cells. In contrast, AdHIF-1␣-no-TAD (multiplicity of infection 50) ablated the anoxic resistance in both cell lines (IC 50 values: HT1080, 0.7 Ϯ 0.04 M; HCT116, 3 Ϯ 1 M). HIF-1␣-no-TAD expression inhibited HIF-1-mediated down-regulation of the proapoptotic protein Bid under anoxia. These data support the potential development of HIF-1 targeted approaches in combination with chemotherapy, where hypoxic cell resistance contributes to treatment failure.
Purpose: Novel molecularly targeted agents, given in combination with radiotherapy, have the potential to increase tumor response rates and the survival of patients with lung cancer. AZD6244 is a potent and selective inhibitor of mitogen-activated protein kinase (MAPK) kinase 1/2 (MEK1/2), a critical enzyme within the MAPK/extracellular signalregulated kinase (ERK) signaling pathway that regulates the proliferation and survival of tumor cells. Experimental Design: This study examined the potential benefit of combining AZD6244 with fractionated radiotherapy using human lung and colon carcinoma xenograft models. Results: AZD6244 reduced ERK phosphorylation in Calu-6 lung cancer cells in vitro. Administration of AZD6244 for 10 days (25 mg/kg twice daily p.o.) inhibited the tumor growth of Calu-6 xenografts, with regrowth occurring on cessation of drug treatment. When fractionated tumor-localized radiotherapy (5 × 2 Gy) was combined with AZD6244 treatment, the tumor growth delay was enhanced significantly when compared with either modality alone, and this effect was also seen in a colon tumor model. We examined the effect of inhibiting MEK1/2 on the molecular responses to hypoxia, a potential interaction that could contribute to radioresponsiveness. AZD6244 reduced hypoxia-inducible factorspecific transactivation in vivo, shown using Calu-6 dual clone cells that stably express a Firefly luciferase gene under the control of a hypoxia-driven promoter. Furthermore, hypoxia-inducible factor-1α, GLUT-1, and vascular endothelial growth factor levels were reduced by AZD6244, and there was a significant decrease in vascular perfusion in the tumors given combination treatment when compared with the other treatment groups. Conclusions: These data provide support for the clinical development of AZD6244 in combination with radiotherapy and indicate a potential role for AZD6244 in inhibiting the tumor hypoxia response. (Clin Cancer Res 2009;15(21):6619-29)
Supplementary Data from The Mitogen-Activated Protein/Extracellular Signal-Regulated Kinase Kinase 1/2 Inhibitor AZD6244 (ARRY-142886) Enhances the Radiation Responsiveness of Lung and Colorectal Tumor Xenografts
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.