Background:Asthma and COPD are characterized by airway dysfunction and inflammation. Neutrophilic airway inflammation is a common feature of COPD and is recognized in asthma, particularly in severe disease. The T helper (Th) 17 cytokines IL-17A and IL-17F have been implicated in the development of neutrophilic airway inflammation, but their expression in asthma and COPD is uncertain.Methods:We assessed IL-17A and IL-17F expression in the bronchial submucosa from 30 subjects with asthma, 10 ex-smokers with mild to moderate COPD, and 27 nonsmoking and 14 smoking control subjects. Sputum IL-17 concentration was measured in 165 subjects with asthma and 27 with COPD.Results:The median (interquartile range) IL-17A cells/mm2 submucosa was increased in mild to moderate asthma (2.1 [2.4]) compared with healthy control subjects (0.4 [2.8]) but not in severe asthma (P = .04). In COPD, IL-17A+ cells/mm2 submucosa were increased (0.5 [3.7]) compared with nonsmoking control subjects (0 [0]) but not compared with smoking control subjects (P = .046). IL-17F+ cells/mm2 submucosa were increased in severe asthma (2.7 [3.6]) and mild to moderate asthma (1.6 [1.0]) compared with healthy controls subjects (0.7 [1.4]) (P = .001) but was not increased in subjects with COPD. IL-17A and IL-17F were not associated with increased neutrophilic inflammation, but IL-17F was correlated with the submucosal eosinophil count (rs = 0.5, P = .005). The sputum IL-17 concentration in COPD was increased compared with asthma (2 [0-7] pg/mL vs 0 [0-2] pg/mL, P < .0001) and was correlated with post-bronchodilator FEV1% predicted (r = −0.5, P = .008) and FEV1/FVC (r = −0.4, P = .04).Conclusions:Our findings support a potential role for the Th17 cytokines IL-17A and IL-17F in asthma and COPD, but do not demonstrate a relationship with neutrophilic inflammation.
Background-Airway smooth muscle (ASM) hyperplasia is a hallmark of asthma that is associated with disease severity and persistent airflow obstruction.
BackgroundMast cell localization within the airway smooth muscle (ASM)-bundle plays an important role in the development of airway hyper-responsiveness (AHR). Genomewide association studies implicate the ‘alarmin’ IL-33 in asthma, but its role in mast cell–ASM interactions is unknown.ObjectivesWe examined the expression and functional role of IL-33 in bronchial biopsies of patients with and without asthma, ex vivo ASM, mast cells, cocultured cells and in a mouse model system.MethodsIL-33 protein expression was assessed in human bronchial tissue from 9 healthy controls, and 18 mild-to-moderate and 12 severe asthmatic patients by immunohistochemistry. IL-33 and ST2 mRNA and protein expression in human-derived ASM, epithelial and mast cells were assessed by qPCR, immunofluorescence and/or flow cytometry and ELISA. Functional assays were used to assess calcium signalling, wound repair, proliferation, apoptosis and contraction. AHR and inflammation were assessed in a mouse model.ResultsBronchial epithelium and ASM expressed IL-33 with the latter in asthma correlating with AHR. ASM and mast cells expressed intracellular IL-33 and ST2. IL-33 stimulated mast cell IL-13 and histamine secretion independent of FcεR1 cross-linking and directly promoted ASM wound repair. Coculture of mast cells with ASM activated by IL-33 increased agonist-induced ASM contraction, and in vivo IL-33 induced AHR in a mouse cytokine installation model; both effects were IL-13 dependent.ConclusionIL-33 directly promotes mast cell activation and ASM wound repair but indirectly promotes ASM contraction via upregulation of mast cell-derived IL-13. This suggests that IL-33 may present an important target to modulate mast cell–ASM crosstalk in asthma.
Yellow fluorescent protein (YFP 10C) is widely used as a probe in biology, but its complex photochemistry gives rise to unusual behavior that requires fuller definition. Here we characterize the kinetics of protonation and reversible bleaching over time scales of picoseconds to hours. Stopped-flow and pressure-jump techniques showed that protonation of the fluorescent YFP -anion state is two-step with a slow transition that accounts for blinking of 527 nm emission at the single molecule level on the seconds time scale. Femtosecond spectroscopy revealed that the protonated excited-state (YFPH*) decayed predominantly by a radiationless mechanism, but emission at 460 nm was detected within the first picosecond. Limited excited-state proton transfer leads to 527 nm emission characteristic of the YFP -* anion. Prolonged continuous wave illumination at the peak of YFP -absorbance (514 nm) yields, irreversibly, a weakly fluorescent product that absorbs at 390 nm. This "photobleaching" process also gives a different species (YFPHrb) that absorbs at 350/430 nm and spontaneously regenerates YFP -in the dark on the time scale of hours but can be photoactivated by UV light to regenerate YFP -within seconds, via a ground-state protonated intermediate. Using a pulsed laser for photobleaching resulted in decarboxylation of YFP as indicated by the mass spectrum. These observations are accounted for in a unifying kinetic scheme.Green fluorescent protein (GFP) 1 and its color variants have found wide use in biology to probe protein dynamics in vitro and within cells (1). They have also attracted the attention of spectroscopists owing to their complex photochemistry (2-5). In particular, those in the YFP class (i.e. containing a T203Y or T203F mutation to shift the emission to 527 nm) have been shown to undergo fluctuations of emission intensity over a wide range of times scales and reversible photobleaching (6-8). Fluctuations in emission were observed by wide field microscopy at the single molecule level by immobilizing individual YFP molecules in acrylamide or agarose gels and using TIRF excitation (6, 9). Molecules were found to blink on the seconds time scale at low laser powers (<500 W cm -2 ). Increasing laser power reduced the lifetime of the emitting state, but not in direct proportion to the laser power. Initial studies discussed the possibility that the fluctuations were related to the protonation of the phenolate moiety of the fluorophore derived from Y66 (6), but later studies found little pH dependence of the onand off-times when monitored at a laser power of 5000 W cm -2 (9).Members of the YFP class also showed a photochromic switching behavior. Molecules that were bleached by 488 nm irradiation, could be induced to fluoresce by illumination with near UV or blue light (6-8). This reversible photobleaching reaction of YFP was observed in FRET measurements (10). Illumination of YFP at 514 nm resulted in bleaching of the YFP acceptor and dequenching of a donor CFP molecule. Once the YFP was bleached, illumina...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.