Estrogen receptor-, progesterone receptor- and HER2-negative breast cancers, also known as triple-negative breast cancers (TNBCs), have poor prognoses and are refractory to current therapeutic agents, including epidermal growth factor receptor (EGFR) inhibitors. Resistance to anti-EGFR therapeutic agents is often associated with sustained kinase phosphorylation, which promotes EGFR activation and translocation to the nucleus and prevents these agents from acting on their targets. The mechanisms underlying this resistance have not been fully elucidated. In addition, the IL-17E receptor is overexpressed in TNBC tumors and is associated with a poor prognosis. We have previously reported that IL-17E promotes TNBC resistance to anti-mitotic therapies. Here, we investigated whether IL-17E promotes TNBC resistance to anti-EGFR therapeutic agents by exploring the link between the IL-17E/IL-17E receptor axis and EGF signaling. We found that IL-17E, similarly to EGF, activates the EGFR in TNBC cells that are resistant to EGFR inhibitors. It also activates the PYK-2, Src and STAT3 kinases, which are essential for EGFR activation and nuclear translocation. IL-17E binds its specific receptor, IL-17RA/IL17RB, on these TNBC cells and synergizes with the EGF signaling pathway, thereby inducing Src-dependent EGFR transactivation and pSTAT3 and pEGFR translocation to the nucleus. Collectively, our data indicate that the IL-17E/IL-17E receptor axis may underlie TNBC resistance to EGFR inhibitors and suggest that inhibiting IL-17E or its receptor in combination with EGFR inhibitor administration may improve TNBC management.
Electrospray ionization mass spectrometry (ESI-MS) is a powerful label-free assay for detecting noncovalent biomolecular complexes in vitro and is increasingly used to quantify binding thermochemistry. A common assumption made in ESI-MS affinity measurements is that the relative ion signals of free and bound species quantitatively reflect their relative concentrations in solution. However, this is valid only when the interacting species and their complexes have similar ESI-MS response factors (RFs). For many biomolecular complexes, such as protein−protein interactions, this condition is not satisfied. Existing strategies to correct for nonuniform RFs are generally incompatible with static nanoflow ESI (nanoESI) sources, which are typically used for biomolecular interaction studies, thereby significantly limiting the utility of ESI-MS. Here, we introduce slow mixing mode (SLOMO) nanoESI-MS, a direct technique that allows both the RF and affinity (K d ) for a biomolecular interaction to be determined from a single measurement using static nanoESI. The approach relies on the continuous monitoring of interacting species and their complexes under nonhomogeneous solution conditions. Changes in ion signals of free and bound species as the system approaches or moves away from a steady-state condition allow the relative RFs of the free and bound species to be determined. Combining the relative RF and the relative abundances measured under equilibrium conditions enables the K d to be calculated. The reliability of SLOMO and its ease of use is demonstrated through affinity measurements performed on peptide−antibiotic, protease−protein inhibitor, and protein oligomerization systems. Finally, affinities measured for the binding of human and bacterial lectins to a nanobody, a viral glycoprotein, and glycolipids displayed within a model membrane highlight the tremendous power and versatility of SLOMO for accurately quantifying a wide range of biomolecular interactions important to human health and disease.
Dynamic and reciprocal interactions generated by the communication between tumor cells and their matrix microenvironment, play a major role in the progression of a tumor. Indeed, the adhesion of specific sites to matrix components, associated with the repeated and coordinated formation of membrane protrusions, allow tumor cells to move along a determined pathway. Our study analyzed the mechanism of action of low-diluted Phenacetinum on murine cutaneous melanoma process in a fibronectin matrix environment. We demonstrated a reduction of dispersed cell migration, early and for as long as 24 h, by altering the formation of cell protrusions. Moreover, low-diluted Phenacetinum decreased cell stiffness highly on peripheral areas, due to a disruption of actin filaments located just under the plasma membrane. Finally, it modified the structure of the plasma membrane by accumulating large ordered lipid domains and disrupted B16 cell migration by a likely shift in the balance between ordered and disordered lipid phases. Whereas the correlation between the excess of lipid raft and cytoskeleton disrupting is not as yet established, it is clear that low-diluted Phenacetinum acts on the actin cytoskeleton organization, as confirmed by a decrease of cell stiffness affecting ultimately the establishment of an effective migration process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.