Environmental stimuli that are reliably associated with the effects of many abused drugs, especially stimulants such as cocaine, can produce craving and relapse in abstinent human substance abusers. In animals, such cues can induce and maintain drug-seeking behaviour and also reinstate drug-seeking after extinction. Reducing the motivational effects of drug-related cues might therefore be useful in the treatment of addiction. Converging pharmacological, human post-mortem and genetic studies implicate the dopamine D3 receptor in drug addiction. Here we have designed BP 897, the first D3-receptor-selective agonist, as assessed in vitro with recombinant receptors and in vivo with mice bearing disrupted D3-receptor genes. BP 897 is a partial agonist in vitro and acts in vivo as either an agonist or an antagonist. We show that BP 897 inhibits cocaine-seeking behaviour that depends upon the presentation of drug-associated cues, without having any intrinsic, primary rewarding effects. Our data indicate that compounds like BP 897 could be used for reducing the drug craving and vulnerability to relapse that are elicited by drug-associated environmental stimuli.
Following the discovery of the weak, competitive and reversible acetylcholinesterase (AChE)-inhibiting activity of minaprine (3c) (IC50 = 85 microM on homogenized rat striatum AChE), a series of 3-amino-6-phenylpyridazines was synthesized and tested for inhibition of AChE. A classical structure-activity relationship exploration suggested that, in comparison to minaprine, the critical elements for high AChE inhibition are as follows: (i) presence of a central pyridazine ring, (ii) necessity of a lipophilic cationic head, (iii) change from a 2- to a 4-5-carbon units distance between the pyridazine ring and the cationic head. Among all the derivatives investigated, 3-[2-(1-benzylpiperidin-4-yl)ethylamino]-6-phenylpyridazine (3y), which shows an IC50 of 0.12 microM on purified AChE (electric eel), was found to be one of the most potent anti-AChE inhibitors, representing a 5000-fold increase in potency compared to minaprine.1
The dopamine D(3) receptor is recognized as a potential therapeutic target for the treatment of various neurological and psychiatric disorders. Targetting high affinity and D(3) versus D(2) receptor-preferring ligands, the partial agonist BP 897 was taken as a lead structure. Variations in the spacer and the aryl moiety led to N-alkylated 1-(2-methyoxyphenyl)piperazines with markedly improved affinity and selectivity. Molecular modeling studies supported the structural development. Pharmacophore models for dopamine D(2) and D(3) receptor ligands were developed from their potentially bioactive conformation and were compared in order to get insight into molecular properties of importance for D(2)/D(3) receptor selectivity. For the 72 compounds presented here, an extended and more linear conformation in the aliphatic or aryl spacers turned out to be crucial for dopamine D(3) receptor selectivity. Structural diversity in the aryl moiety (benzamides, heteroarylamides, arylimides) had a major influence on (sub)nanomolar D(3) receptor affinity, which was optimized with more rigid aryl acrylamide derivatives. Compound 38 (ST 280, (E)-4-iodo-N-(4-(4-(2-methoxyphenyl)piperazin-1-yl)butyl)cinnamoylamide) displayed a most promising pharmacological profile (K(i) (hD(3)) = 0.5 nM; K(i) (hD(2L)) = 76.4 nM; selectivity ratio of 153), and above that, compound 38 offered the prospect of a novel radioligand as a pharmacological tool for various D(3) receptor-related in vitro and in vivo investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.