OECD test guideline 428 compliant protocol using human skin was used to test the penetration of 56 cosmetic‐relevant chemicals. The penetration of finite doses (10 μL/cm2) of chemicals was measured over 24 hours. The dermal delivery (DD) (amount in the epidermis, dermis and receptor fluid [RF]) ranged between 0.03 ± 0.02 and 72.61 ± 8.89 μg/cm2. The DD of seven chemicals was comparable with in vivo values. The DD was mainly accounted for by the amount in the RF, although there were some exceptions, particularly of low DD chemicals. While there was some variability due to cell outliers and donor variation, the overall reproducibility was very good. As six chemicals had to be applied in 100% ethanol due to low aqueous solubility, we compared the penetration of four chemicals with similar physicochemical properties applied in ethanol and phosphate‐buffered saline. Of these, the DD of hydrocortisone was the same in both solvents, while the DD of propylparaben, geraniol and benzophenone was lower in ethanol. Some chemicals displayed an infinite dose kinetic profile; whereas, the cumulative absorption of others into the RF reflected the finite dosing profile, possibly due to chemical volatility, total absorption, chemical precipitation through vehicle evaporation or protein binding (or a combination of these). These investigations provide a substantial and consistent set of skin penetration data that can help improve the understanding of skin penetration, as well as improve the prediction capacity of in silico skin penetration models.
Polycyclic aromatic hydrocarbons (PAHs) are associated with occupational exposure and urban atmospheric pollution. Determination of the genotoxic properties of these compounds is thus of outmost importance. For this purpose a variety of cellular models have been widely used. Reliable results can however only be obtained with models reflecting the specific sensitivity of different organs towards PAHs. In this work, we compared the response to benzo[a]pyrene in cell lines from human lungs (A549) and bladder (T24); two important target organs for PAHs-induced cancer. Human hepatocytes (HepG2) were used as a reference, although liver is not a concern for PAHs carcinogenesis. Adducts arising from the ultimate diol-epoxide metabolite of B[a]P, BPDE, were found to be produced in a dose-dependent manner in HepG2. BPDE DNA adducts were not detected in T24 and in A549 their formation was found to be most efficient at the lowest concentration studied (0.2 µM). These results are probably explained by differences in induction and activity of phase I metabolization enzymes, as well as by proteins eliminating the B[a]P epoxide in A549. In addition to BPDE adducts, oxidative DNA damage, namely strand breaks and oxidized purines were measured and found to be produced only in minute amounts in all three cell lines. In summary, our results emphasize the large differences in the response of cells originating from different organs. Our data also point out the importance of carefully selecting the doses used in in vitro toxicological experiments. The example of A549 shows that working at high doses may lead to an underestimation of the risk. Finally, the choice of method for evaluating genotoxicity appears to be of crucial importance. The comet assay does not seem to be the best method for a compound like B[a]P which induces stable adducts causing limited oxidative damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.