During X chromosome inactivation (XCI), the Polycomb Repressive Complex 2 (PRC2) is thought to participate in the early maintenance of the inactive state. Although Xist RNA is essential for the recruitment of PRC2 to the X chromosome, the precise mechanism remains unclear. Here, we demonstrate that the PRC2 cofactor Jarid2 is an important mediator of Xist-induced PRC2 targeting. The region containing the conserved B and F repeats of Xist is critical for Jarid2 recruitment via its unique N-terminal domain. Xist-induced Jarid2 recruitment occurs chromosome-wide independently of a functional PRC2 complex, unlike at other parts of the genome, such as CG-rich regions, where Jarid2 and PRC2 binding are interdependent. Conversely, we show that Jarid2 loss prevents efficient PRC2 and H3K27me3 enrichment to Xist-coated chromatin. Jarid2 thus represents an important intermediate between PRC2 and Xist RNA for the initial targeting of the PRC2 complex to the X chromosome during onset of XCI.
The linear stability of chains of magnetic vortices in a plasma is investigated analytically in two dimensions by means of a reduced fluid model assuming a strong guide field and accounting for equilibrium electron temperature anisotropy. The chain of magnetic vortices is modeled by means of the classical 'cat's eyes' solutions and the linear stability is studied by analysing the second variation of a conserved functional, according to the energy-Casimir method. The stability analysis is carried out on the domain bounded by the separatrices of the vortices. Two cases are considered, corresponding to a ratio between perpendicular equilibrium ion and electron temperature much greater or much less than unity, respectively. In the former case, equilibrium flows depend on an arbitrary function. Stability is attained if the equilibrium electron temperature anisotropy is bounded from above and from below, with the lower bound corresponding to the condition preventing the firehose instability. A further condition sets an upper limit to the amplitude of the vortices, for a given choice of the equilibrium flow. For cold ions, two sub-cases have to be considered. In the first one, equilibria correspond to those for which the velocity field is proportional to the local Alfvén velocity. Stability conditions imply: an upper limit on the amplitude of the flow, which automatically implies firehose stability, an upper bound on the electron temperature anisotropy and again an upper bound on the size of the vortices. The second sub-case refers to equilibrium electrostatic potentials which are not constant on magnetic flux surfaces and the resulting stability conditions correspond to those of the first sub-case in the absence of flow.
The linear and nonlinear evolutions of the tearing instability in a collisionless plasma with a strong guide field are analysed on the basis of a two-field Hamiltonian gyrofluid model. The model is valid for a low ion temperature and a finite $\beta _e$ . The finite $\beta _e$ effect implies a magnetic perturbation along the guide field direction, and electron finite Larmor radius effects. A Hamiltonian derivation of the model is presented. A new dispersion relation of the tearing instability is derived for the case $\beta _e=0$ and tested against numerical simulations. For $\beta _e \ll 1$ the equilibrium electron temperature is seen to enhance the linear growth rate, whereas we observe a stabilizing role when electron finite Larmor radius effects become more relevant. In the nonlinear phase, stall phases and faster than exponential phases are observed, similarly to what occurs in the presence of ion finite Larmor radius effects. Energy transfers are analysed and the conservation laws associated with the Casimir invariants of the model are also discussed. Numerical simulations seem to indicate that finite $\beta _e$ effects do not produce qualitative modifications in the structures of the Lagrangian invariants associated with Casimirs of the model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.