Deep Learning (DL) and Artificial Intelligence (AI) tools have shown great success in different areas of medical diagnostics. In this paper, we show another success in orthodontics. In orthodontics, the right treatment timing of many actions and operations is crucial because many environmental and genetic conditions may modify jaw growth. The stage of growth is related to the Cervical Vertebra Maturation (CVM) degree. Thus, determining the CVM to determine the suitable timing of the treatment is important. In orthodontics, lateral X-ray radiography is used to determine it. Many classical methods need knowledge and time to look and identify some features. Nowadays, ML and AI tools are used for many medical and biological diagnostic imaging. This paper reports on the development of a Deep Learning (DL) Convolutional Neural Network (CNN) method to determine (directly from images) the degree of maturation of CVM classified in six degrees. The results show the performances of the proposed method in different contexts with different number of images for training, evaluation and testing and different pre-processing of these images. The proposed model and method are validated by cross validation. The implemented software is almost ready for use by orthodontists.
Many environmental and genetic conditions may modify jaws growth. In orthodontics, the right treatment timing is crucial. This timing is a function of the Cervical Vertebra Maturation (CVM) degree. Thus, determining the CVM is important. In orthodontics, the lateral X-ray radiography is used to determine it. Many classical methods need knowledge and time to look and identify some features to do it. Nowadays, Machine Learning (ML) and Artificial Intelligent (AI) tools are used for many medical and biological image processing, clustering and classification. This paper reports on the development of a Deep Learning (DL) method to determine directly from the images the degree of maturation of CVM classified in six degrees. Using 300 such images for training and 200 for evaluating and 100 for testing, we could obtain a 90% accuracy. The proposed model and method are validated by cross validation. The implemented software is ready for use by orthodontists.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.