Late-stage functionalization of natural products offers an elegant route to create novel entities in a relevant biological target space. In this context, enzymes capable of halogenating sp3 carbons with high stereo- and regiocontrol under benign conditions have attracted particular attention. Enabled by a combination of smart library design and machine learning, we engineer the iron/α-ketoglutarate dependent halogenase WelO5* for the late-stage functionalization of the complex and chemically difficult to derivatize macrolides soraphen A and C, potent anti-fungal agents. While the wild type enzyme WelO5* does not accept the macrolide substrates, our engineering strategy leads to active halogenase variants and improves upon their apparent kcat and total turnover number by more than 90-fold and 300-fold, respectively. Notably, our machine-learning guided engineering approach is capable of predicting more active variants and allows us to switch the regio-selectivity of the halogenases facilitating the targeted analysis of the derivatized macrolides’ structure-function activity in biological assays.
The epipolythiodioxopiperazine (ETP) gliotoxin mediates toxicity via its reactive thiol groups and thereby contributes to virulence of the human pathogenic fungus Aspergillus fumigatus. Self-intoxication of the mold is prevented either by reversible oxidation of reduced gliotoxin or by irreversible conversion to bis(methylthio)gliotoxin. The latter is produced by the S-methyltransferase TmtA and attenuates ETP biosynthesis. Here, we report the crystal structure of TmtA in complex with S-(5'-adenosyl)-l-homocysteine. TmtA features one substrate and one cofactor binding pocket per protein, and thus, bis-thiomethylation of gliotoxin occurs sequentially. Molecular docking of substrates and products into the active site of TmtA reveals that gliotoxin forms specific interactions with the protein surroundings, and free energy calculations indicate that methylation of the C10a-SH group precedes alkylation of the C3-SH site. Altogether, TmtA is well suited to selectively convert gliotoxin and to control its biosynthesis, suggesting that homologous enzymes serve to regulate the production of their toxic natural sulfur compounds in a similar manner.
Selective inhibition of the immunoproteasome is a promising approach towards the development of immunomodulatory drugs. Recently, a class of substituted thiazole compounds that combine a nonpeptidic scaffold with the absence of an electrophile was reported in a patent. Here, we investigated the mode of action of the lead compound by using a sophisticated chimeric yeast model of the human immunoproteasome for structural studies. The inhibitor adopts a unique orientation perpendicular to the β5i substrate-binding channel. Distinct interactions between the inhibitor and the subpockets of the human immunoproteasome account for its isotype selectivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.