Nicotinic acid (niacin) is a drug used to reduce the progression of atherosclerosis. Its antiatherosclerotic activity is believed to result from lipid-modifying effects, including its ability to decrease LDL cholesterol and increase HDL cholesterol levels in plasma. Here, we report that in a mouse model of atherosclerosis, we found that nicotinic acid inhibited disease progression under conditions that left total cholesterol and HDL cholesterol plasma levels unaffected. The antiatherosclerotic effect was not seen in mice lacking the receptor for nicotinic acid GPR109A. Surprisingly, transplantation of bone marrow from GPR109A-deficient mice into atherosclerosis-prone animals also abrogated the beneficial effect of nicotinic acid. We detected expression of GPR109A in macrophages in atherosclerotic plaques. In macrophages from WT mice, but not from GPR109A-deficient animals, nicotinic acid induced expression of the cholesterol transporter ABCG1 and promoted cholesterol efflux. Furthermore, activation of GPR109A by nicotinic acid inhibited MCP-1-induced recruitment of macrophages into the peritoneal cavity and impaired macrophage recruitment to atherosclerotic plaques. In contrast with current models, our data show that nicotinic acid can reduce the progression of atherosclerosis independently of its lipid-modifying effects through the activation of GPR109A on immune cells. We conclude therefore that GPR109A mediates antiinflammatory effects, which may be useful for treating atherosclerosis and other diseases.
Cell surface receptors for high-density lipoprotein (HDL) on hepatocytes are major partners in the regulation of cholesterol homeostasis. We recently identified a cell surface ATP synthase as a high-affinity receptor for HDL apolipoprotein A-I (apoA-I) on human hepatocytes. Stimulation of this ectopic ATP synthase by apoA-I triggered a low-affinity-receptor-dependent HDL endocytosis by a mechanism strictly related to the generation of ADP. This suggests that nucleotide G-protein-coupled receptors of the P2Y family are molecular components in this pathway. Only P2Y1 and P2Y13 are present on the membrane of hepatocytes. Using both a pharmacological approach and small interference RNA, we identified P2Y13 as the main partner in hepatic HDL endocytosis, in cultured cells as well as in situ in perfused mouse livers. We also found a new important action of the antithrombotic agent AR-C69931MX as a strong activator of P2Y13-mediated HDL endocytosis.
A major atheroprotective functionality of high-density lipoproteins (HDLs) is to promote ''reverse cholesterol transport'' (RCT). In this process, HDLs mediate the efflux and transport of cholesterol from peripheral cells and its subsequent transport to the liver for further metabolism and biliary excretion. We have previously demonstrated in cultured hepatocytes that P2Y 13 (purinergic receptor P2Y, G protein-coupled, 13) activation is essential for HDL uptake but the potential of P2Y 13 as a target to promote RCT has not been documented. Here, we show that P2Y 13 -deficient mice exhibited a decrease in hepatic HDL cholesterol uptake, hepatic cholesterol content, and biliary cholesterol output, although their plasma HDL and other lipid levels were normal. These changes translated into a substantial decrease in the rate of macrophage-to-feces RCT. Therefore, hallmark features of RCT are impaired in P2Y 13 -deficient mice. Furthermore, cangrelor, a partial agonist of P2Y 13 , stimulated hepatic HDL uptake and biliary lipid secretions in normal mice and in mice with a targeted deletion of scavenger receptor class B type I (SR-BI) in liver (hypomSR-BIknockout liver ) but had no effect in P2Y 13 knockout mice, which indicate that P2Y 13 -mediated HDL uptake pathway is independent of SR-BI-mediated HDL selective cholesteryl ester uptake. Conclusion: These results establish P2Y 13 as an attractive novel target for modulating RCT and support the emerging view that steady-state plasma HDL levels do not necessarily reflect the capacity of HDL to promote RCT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.