Sexual isolation is a critical form of reproductive isolation in the early stages of animal speciation, yet little is known about the genetic basis of divergent mate preferences and preference cues in young species. Heliconius butterflies, well known for their diversity of wing color patterns, mate assortatively as a result of divergence in male preference for wing patterns. Here we show that the specific cue used by Heliconius cydno and Heliconius pachinus males to recognize conspecific females is the color of patches on the wings. In addition, male mate preference segregates with forewing color in hybrids, indicating a genetic association between the loci responsible for preference and preference cue. Quantitative trait locus mapping places a preference locus coincident with the locus that determines forewing color, which itself is perfectly linked to the wing patterning candidate gene, wingless. Furthermore, yellow-colored males of the polymorphic race H. cydno alithea prefer to court yellow females, indicating that wing color and color preference are controlled by loci that are located in an inversion or are pleiotropic effects of a single locus. Tight genetic associations between preference and preference cue, although rare, make divergence and speciation particularly likely because the effects of natural and sexual selection on one trait are transferred to the other, leading to the coordinated evolution of mate recognition. This effect of linkage on divergence is especially important in Heliconius because differentiation of wing color patterns in the genus has been driven and maintained by natural selection for Mü llerian mimicry.Heliconius ͉ Lepidoptera ͉ sexual isolation ͉ speciation
Although excessive loading of fine sediments into rivers is well known to degrade salmonid spawning habitat, its effects on rearing juveniles have been unclear. We experimentally manipulated fine bed sediment in a northern California river and examined responses of juvenile salmonids and the food webs supporting them. Increasing concentrations of deposited fine sediment decreased growth and survival of juvenile steelhead trout. These declines were associated with a shift in invertebrates toward burrowing taxa unavailable as prey and with increased steelhead activity and injury at higher levels of fine sediment. The linear relationship between deposited fine sediment and juvenile steelhead growth suggests that there is no threshold below which exacerbation of fine‐sediment delivery and storage in gravel bedded rivers will be harmless, but also that any reduction could produce immediate benefits for salmonid restoration.
1. Use of the natural ratios of carbon and nitrogen stable isotopes as tracers of trophic interactions has some clear advantages over alternative methods for food web analyses, yet is limited to situations where organic materials of interest have adequate isotopic separation between potential sources. This constrains the use of natural abundance stable isotope approaches to a subset of ecosystems with biogeochemical conditions favourable to source separation. 2. Recent studies suggest that stable hydrogen isotopes (dD) could provide a robust tracer to distinguish contributions of aquatic and terrestrial production in food webs, but variation in dD of consumers and their organic food sources are poorly known. To explore the utility of the stable hydrogen isotope approach, we examined variation in dD in stream food webs in a forested catchment where variation in d 13 C has been described previously. 3. Although algal dD varied by taxa and, to a small degree, between sites, we found consistent and clear separation (by an average of 67&) from terrestrial carbon sources. Environmental conditions known to affect algal d 13 C, such as water velocity and stream productivity did not greatly influence algal dD, and there was no evidence of seasonal variation. In contrast, algal d 13 C was strongly affected by environmental factors both within and across sites, was seasonally variable at all sites, and partially overlapped with terrestrial d 13 C in all streams with catchment areas larger than 10 km 2 . 4. While knowledge of isotopic exchange with water and trophic fractionation of dD for aquatic consumers is limited, consistent source separation in streams suggests that dD may provide a complementary food web tracer to d 13 C in aquatic food webs. Lack of significant seasonal or spatial variation in dD is a distinct advantage over d 13 C for applications in many aquatic ecosystems.
We investigated the effect of grazing by a dominant invertebrate grazer (the caddisfly Glossosoma penitum) on the energy sources used by other consumers in a headwater-stream food web. Stable isotope studies in small, forested streams in northern California have shown that G. penitum larvae derive most of their carbon from algae, despite low algal standing crops. We hypothesized that the caddisfly competes with other primary consumers (including mayflies) for algal food and increases their reliance on terrestrial detritus. Because Glossosoma are abundant and defended from predators by stone cases, their consumption of algal energy may reduce its transfer up the food chain. We removed Glossosoma (natural densities >1000 caddisflies/m2) from five approximately 4 m2) stream sections during the summer of 2000 and measured responses of algae, invertebrate primary consumers, and invertebrate predators. The treatment reduced Glossosoma biomass by 80-90%. We observed a doubling in chlorophyll a per area in sections with reduced Glossosoma abundance and aggregative increases in the biomass of undefended primary consumers. Heptageniid mayfly larvae consumed more algae (as measured by stable carbon isotope ratios and gut content analysis) in caddisfly removal plots at the end of the 60-day experiment, although not after one month. We did not see isotopic evidence of increased algal carbon in invertebrate predators, however. Patterns of caddisfly and mayfly diets in the surrounding watershed suggested that mayfly diets are variable and include algae and detrital carbon in variable proportions, but scraping caddisflies consume primarily algae. Caddisfly and mayfly diets are more similar in larger, more productive streams where the mayflies assimilate more algae. Isotopic analysis, in combination with measurements of macroinvertebrate abundance and biomass in unmanipulated plots, suggested that a substantial portion of the invertebrate community (>50% of biomass) was supported, at least partially, by local algal carbon during midsummer. These data suggest that algae may be more important to community dynamics in headwater streams than their relatively low productivity would suggest. Through their high densities and relative invulnerability to predation, armored grazers may also affect community structure and flow of algal and detrital carbon in headwater streams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.