Summary1. Estimating forest above-ground biomass (AGB), or carbon (AGC), in tropical forests has become a major concern for scientists and stakeholders. However, AGB assessment procedures are not fully standardized and even more importantly, the uncertainty associated with AGB estimates is seldom assessed. 2. Here, we present an R package designed to compute both AGB/AGC estimate and its associated uncertainty from forest plot datasets, using a Bayesian inference procedure. The package builds upon previous work on pantropical and regional biomass allometric equations and published datasets by default, but it can also integrate unpublished or complementary datasets in many steps. 3. BIOMASS performs a number of standard tasks on input forest tree inventories: (i) tree species identification, if available, is automatically corrected; (ii) wood density is estimated from tree species identity; (iii) if height data are available, a local height-diameter allometry may be built; else height is inferred from pantropical or regional models; (iv) finally, AGB/AGC are estimated by propagating the errors associated with all the calculation steps up to the final estimate. R code is given in the paper and in the appendix for the purpose of illustration. 4. The BIOMASS package should contribute to improved standards for AGB calculation for tropical forest stands, and will encourage users to report the uncertainties associated with stand-level AGB/AGC estimates in future studies.
Around 30 Mm 3 of sawlogs are extracted annually by selective logging of natural production forests in Amazonia, Earth's most extensive tropical forest. Decisions concerning the management of these production forests will be of major importance for Amazonian forests' fate. To date, no regional assessment of selective logging sustainability supports decision-making. Based on data from 3500 ha of forest inventory plots, our modelling results show that the average periodic harvests of 20 m 3 ha −1 will not recover by the end of a standard 30 year cutting cycle. Timber recovery within a cutting cycle is enhanced by commercial acceptance of more species and with the adoption of longer cutting cycles and lower logging intensities. Recovery rates are faster in Western Amazonia than on the Guiana Shield. Our simulations suggest that regardless of cutting cycle duration and logging intensities, selectively logged forests are unlikely to meet timber demands over the long term as timber stocks are predicted to steadily decline. There is thus an urgent need to develop an integrated forest resource management policy that combines active management of production forests with the restoration of degraded and secondary forests for timber production. Without better management, reduced timber harvests and continued timber production declines are unavoidable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.