We consider a system of two coupled integro-differential equations modelling populations of healthy and cancer cells under therapy. Both populations are structured by a phenotypic variable, representing their level of resistance to the treatment. We analyse the asymptotic behaviour of the model under constant infusion of drugs. By designing an appropriate Lyapunov function, we prove that both densities converge to Dirac masses. We then define an optimal control problem, by considering all possible infusion protocols and minimising the number of cancer cells over a prescribed time frame. We provide a quasi-optimal strategy and prove that it solves this problem for large final times. For this modelling framework, we illustrate our results with numerical simulations, and compare our optimal strategy with periodic treatment schedules.
Multiphase mechanical models are now commonly used to describe living tissues including tumour growth. The specific model we study here consists of two equations of mixed parabolic and hyperbolic type which extend the standard compressible porous medium equation, including cross-reaction terms. We study the incompressible limit, when the pressure becomes stiff, which generates a free boundary problem. We establish the complementarity relation and also a segregation result.Several major mathematical difficulties arise in the two species case. Firstly, the system structure makes comparison principles fail. Secondly, segregation and internal layers limit the regularity available on some quantities to BV. Thirdly, the Aronson-Bénilan estimates cannot be established in our context. We are lead, as it is classical, to add correction terms. This procedure requires technical manipulations based on BV estimates only valid in one space dimension. Another novelty is to establish an L 1 version in place of the standard upper bound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.