Business Relation Extraction between market entities is a challenging information extraction task that suffers from data imbalance due to the over-representation of negative relations (also known as No-relation or Others) compared to positive relations that corresponds to the taxonomy of relations of interest. This paper proposes a novel solution to tackle this problem, relying on binary soft-labels supervision generated by an approach based on knowledge distillation. When evaluated on a business relation extraction dataset, the results suggest that the proposed approach improves the overall performances, beating state-of-the art solutions for data imbalance. In particular, it improves the extraction of under-represented relations as well as the detection of false negatives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.