Background: Intradermal vaccination provides direct and potentially more efficient access to the immune system via specialised dendritic cells and draining lymphatic vessels. We investigated the immunogenicity and safety during 3 successive years of different dosages of a trivalent, inactivated, split-virion vaccine against seasonal influenza given intradermally using a microinjection system compared with an intramuscular control vaccine.
Here, we report a randomized multicenter phase III trial assessing the lot-to-lot consistency of the 2014–2015 Northern Hemisphere quadrivalent split-virion inactivated influenza vaccine (IIV4; Sanofi Pasteur) and comparing its immunogenicity and safety with that of trivalent inactivated influenza vaccine (IIV3) in younger and older adults (EudraCT no. 2014-000785-21). Younger (18–60 y, n = 1114) and older (>60 y, n = 1111) adults were randomized 2:2:2:1:1 to receive a single dose of one of three lots of IIV4, the licensed IIV3 containing the B Yamagata lineage strain, or an investigational IIV3 containing the B Victoria lineage strain. Post-vaccination (day 21) hemagglutination inhibition antibody titers were equivalent for the three IIV4 lots. For the pooled IIV4s vs. IIV3, hemagglutination inhibition antibody titers were also non-inferior for the A strains, non-inferior for the B strain when present in the comparator IIV3, and superior for the B strain lineage when absent from the comparator IIV3. For all vaccine strains, seroprotection rates were ≥98% in younger adults and ≥90% in older adults. IIV4 also increased seroneutralizing antibody titers against all three vaccine strains of influenza. All vaccines were well tolerated, with no safety concerns identified. Solicited injection-site reactions were similar for IIV4 and IIV3 and mostly grade 1 and transient. This study showed that in younger and older adults, IIV4 had a similar safety profile as the licensed IIV3 and that including a second B strain lineage in IIV4 provided superior immunogenicity for the added B strain without affecting the immunogenicity of the three IIV3 strains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.