A simple method for accurately identifying Glossina spp in the field is a challenge to sustain the future elimination of Human African Trypanosomiasis (HAT) as a public health scourge, as well as for the sustainable management of African Animal Trypanosomiasis (AAT). Current methods for Glossina species identification heavily rely on a few well-trained experts. Methodologies that rely on molecular methodologies like DNA barcoding or mass spectrometry protein profiling (MALDI TOFF) haven’t been thoroughly investigated for Glossina sp. Nevertheless, because they are destructive, costly, time-consuming, and expensive in infrastructure and materials, they might not be well adapted for the survey of arthropod vectors involved in the transmission of pathogens responsible for Neglected Tropical Diseases, like HAT. This study demonstrates a new type of methodology to classify Glossina species. In conjunction with a deep learning architecture, a database of Wing Interference Patterns (WIPs) representative of the Glossina species involved in the transmission of HAT and AAT was used. This database has 1766 pictures representing 23 Glossina species. This cost-effective methodology, which requires mounting wings on slides and using a commercially available microscope, demonstrates that WIPs are an excellent medium to automatically recognize Glossina species with very high accuracy.
Cultural heritage is increasingly put through imaging systems such as multispectral cameras and 3D scanners. Though these acquisition systems are often used independently, they collect complementary information (spectral vs. spatial) used for the study, archiving and visualization of cultural heritage. Recording 3D and multispectral data in a single coordinate system enhances the potential insights in data analysis.We present the state of the art of such acquisition systems and their applications for the study of cultural heritage. We also describe existing registration techniques that can be used to obtain 3D models with multispectral texture and explore the idea of optically tracking acquisition systems to ensure an easy and precise registration.
Bio-inspired Event-Based (EB) cameras are a promising new technology that outperforms standard frame-based cameras in extreme lighted and fast moving scenes. Already, a number of EB corner detection techniques have been developed; however, the performance of these EB corner detectors has only been evaluated based on a few author-selected criteria rather than on a unified common basis, as proposed here. Moreover, their experimental conditions are mainly limited to less interesting operational regions of the EB camera (on which frame-based cameras can also operate), and some of the criteria, by definition, could not distinguish if the detector had any systematic bias. In this paper, we evaluate five of the seven existing EB corner detectors on a public dataset including extreme illumination conditions that have not been investigated before. Moreover, this evaluation is the first of its kind in terms of analysing not only such a high number of detectors, but also applying a unified procedure for all. Contrary to previous assessments, we employed both the intensity and trajectory information within the public dataset rather than only one of them. We show that a rigorous comparison among EB detectors can be performed without tedious manual labelling and even with challenging acquisition conditions. This study thus proposes the first standard unified EB corner evaluation procedure, which will enable better understanding of the underlying mechanisms of EB cameras and can therefore lead to more efficient EB corner detection techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.