The homogeneous charge compression ignition (HCCI) combustion process is an advanced operating mode for automotive engines. The self-ignition mechanisms that occur within the combustion chamber exhibit extreme temperature dependence. Therefore, the thorough understanding of corresponding phenomena requires the use of diagnostic methods featuring a sufficient thermal sensitivity, applicable in severe conditions similar to those encountered within engines. In this respect, toluene planar laser-induced fluorescence (PLIF) is applied to the inert compression flow generated within an optical rapid compression machine (RCM). A relatively simple diagnostic system is retained: a single wavelength excitation device (266 nm) and a single (filtered) collection system. This diagnostic system is associated with an image processing strategy specifically adapted to RCM devices. Despite the severe conditions under consideration (40 bar, 700–950 K), the method allows us to obtain relatively large two-dimensional temperature fields that display a level of description seldom achieved in such devices. In particular the temperature gradients, which play a crucial role in HCCI combustion processes, can be estimated. The present experimental results confirm the good reliability and accuracy of the method. The information gathered with this toluene PLIF method puts in evidence its high potentialities for the study of aero-thermal-reactive processes as they take place in real engine conditions. The retained strategy also brings new possibilities of non-intrusive analysis for flows practically encountered within industrial devices.
The Engine Combustion Network (ECN) community has greatly contributed to improve the fundamental understanding of spray atomization and combustion at conditions relevant to internal combustion engines. In this context, standardized spray experiments have been defined to facilitate the comparison of experimental and simulation studies performed in different facilities and with different models. This operating mode promotes collaborations among research groups and accelerates the advancement of research on spray. In efforts to improve the comparability of the ECN spray A experiments, it is of high importance to review the boundary conditions of different devices used in the community. This work is issued from the collaboration in the ECN France project, where two new experimental facilities from PPRIME (Poitiers) and PRISME (Orleans) institutes are validated to perform spray A experiments. The two facilities, based on Rapid Compression Machine (RCM) design, have been investigated to characterize their boundary conditions (e.g., flow velocity as well as fuel and gas temperatures). A set of standardized spray experiments were performed to compare their results with those obtained in other facilities, in particular the Constant Volume Pre-burn (CVP) vessel at IFPEN. It is noteworthy that it is the first time that RCM type facilities are used in such a way within the ECN. This paper (part 1) focuses on the facilities description and the fine characterization of their boundary conditions. A further paper (part 2) will present the results obtained with the same facilities performing ECN standard spray A characterizations. The reported review of thermocouple thermometry highlights that it is necessary to use thin-wires and bare-bead junction as small as possible. This would help to measure the temperature fluctuations with a minimal need for error corrections, which are highly dependent on the proper estimation of the velocity through the junction, and therefore it may introduce important uncertainties. Temperature heterogeneities are observed in all spray A devices. The standard deviation of the temperature distribution at the time of injection is approximately 5%. We report time-resolved temperature measurement from PPRIME RCM, performed in the near nozzle area during the injection. In inert condition, colder gases from the boundary layer are entrained toward the mixing area of the spray causing a further deviation from the target temperature. This emphasizes the importance of the temperature in the boundary (wall) layer. In reacting condition, the temperature of these entrained gases increases by the effect of the increased pressure, as the RCM has a relatively small volume. Generally, the velocity and turbulence levels are an order of magnitude higher in RCM and constant pressure flow compared to CVP vessels. The boundary characterization presented here will be the base for discussing spray behavior in the part 2 of this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.