Background: Post-mortem studies can provide important information for understanding new diseases and small autopsy case series have already reported different findings in COVID-19 patients. Methods: We evaluated whether some specific post-mortem features are observed in these patients and if these changes are related to the presence of the virus in different organs. Complete macroscopic and microscopic autopsies were performed on different organs in 17 COVID-19 non-survivors. Presence of SARS-CoV-2 was evaluated with immunohistochemistry (IHC) in lung samples and with real-time reverse-transcription polymerase chain reaction (RT-PCR) test in the lung and other organs. Results: Pulmonary findings revealed early-stage diffuse alveolar damage (DAD) in 15 out of 17 patients and microthrombi in small lung arteries in 11 patients. Late-stage DAD, atypical pneumocytes, and/or acute pneumonia were also observed. Four lung infarcts, two acute myocardial infarctions, and one ischemic enteritis were observed. There was no evidence of myocarditis, hepatitis, or encephalitis. Kidney evaluation revealed the presence of hemosiderin in tubules or pigmented casts in most patients. Spongiosis and vascular congestion were the most frequently encountered brain lesions. No specific SARS-CoV-2 lesions were observed in any organ. IHC revealed positive cells with a heterogeneous distribution in the lungs of 11 of the 17 (65%) patients; RT-PCR yielded a wide distribution of SARS-CoV-2 in different tissues, with 8 patients showing viral presence in all tested organs (i.e., lung, heart, spleen, liver, colon, kidney, and brain). Conclusions: In conclusion, autopsies revealed a great heterogeneity of COVID-19-associated organ injury and the remarkable absence of any specific viral lesions, even when RT-PCR identified the presence of the virus in many organs.
Background Post-mortem studies can provide important information for understanding new diseases and small autopsy case series have already reported different findings in COVID-19 patients. Methods We evaluated whether some specific post-mortem features are observed in these patients and if these changes are related to the presence of the virus in different organs. Complete macroscopic and microscopic autopsies were performed on different organs in 17 COVID-19 non-survivors. Presence of SARS-CoV-2 was evaluated with immunohistochemistry (IHC) in lung samples and with real-time reverse-transcription polymerase chain reaction (RT-PCR) test in lung and other organs. Results Pulmonary findings revealed early-stage diffuse alveolar damage (DAD) in 15 out of 17 patients and microthrombi in small lung arteries in 11 patients. Late-stage DAD, atypical pneumocytes and/or acute pneumonia were also observed. Four lung infarcts, two acute myocardial infarctions and one ischemic enteritis were observed. There was no evidence of myocarditis, hepatitis or encephalitis. Kidney evaluation revealed the presence of hemosiderin in tubules or pigmented casts in most patients. Spongiosis and vascular congestion were the most frequently encountered brain lesions. No specific SARS-CoV-2 lesions were observed in any organ. IHC revealed positive cells with a heterogeneous distribution in the lungs of 11 of the 17 (65%) patients; RT-PCR yielded a wide distribution of SARS-CoV-2 in different tissues, with 8 patients showing viral presence in all tested organs (i.e. lung, heart, spleen, liver, colon, kidney and brain). Conclusions In conclusion, autopsies revealed a great heterogeneity of COVID-19-related organ injury and the remarkable absence of any specific viral lesions, even when RT-PCR identified the presence of the virus in many organs.
We compared the diagnostic yield of fetal clinical exome sequencing (fCES) in prospective and retrospective cohorts of pregnancies presenting with anomalies detected using ultrasound. We evaluated factors that led to a higher diagnostic efficiency, such as phenotypic category, clinical characterization, and variant analysis strategy. Methods: fCES was performed for 303 fetuses (183 ongoing and 120 ended pregnancies, in which chromosomal abnormalities had been excluded) using a trio/duo-based approach and a multistep variant analysis strategy. Results: fCES identified the underlying genetic cause in 13% (24/183) of prospective and 29% (35/120) of retrospective cases. In both cohorts, recessive heterozygous compound genotypes were not rare, and trio and simplex variant analysis strategies were complementary to achieve the highest possible diagnostic rate. Limited prenatal phenotypic information led to interpretation challenges. In 2 prospective cases, in-depth analysis allowed expansion of the spectrum of prenatal presentations for genetic syndromes associated with the SLC17A5 and CHAMP1 genes. Conclusion: fCES is diagnostically efficient in fetuses presenting with cerebral, skeletal, urinary, or multiple anomalies. The comparison between the 2 cohorts highlights the importance of providing detailed phenotypic information for better interpretation and prenatal reporting of genetic variants.
Treatment with pembrolizumab, an anti-programmed cell death-1 (PDCD-1) monoclonal antibody for the treatment of non-small cell lung cancers (NSCLCs) requires prior immunohistochemical (IHC) analysis of the expression of the programmed death-ligand 1 (PD-L1) (also known as CD274 molecule) which is a heterogeneous and complex marker. The present study aimed to investigate how pathological and technical factors (such as tumor location and sampling type, respectively) may affect the PD-L1 evaluation in patients with NSCLC in the daily practice of pathology laboratories. The current study was retrospective, and included 454 patients with NSCLC, for whom PD-L1 expression analysis by IHC was prospectively performed between November 2016 and January 2018. The association between PD-L1 expression and the clinicopathological characteristics of patients was statistically investigated using either the χ 2 and Fisher exact tests or the Mann-Whitney and Kruskal-Wallis tests, depending on whether PD-L1 expression was assessed in three large categories (<1, 1-49, ≥50%) or in more precise percentages. Furthermore, the same statistical methodology was used to analyze the heterogeneity of PD-L1 expression according to its sampling type (cytology, biopsy or surgical specimen) and its location (primary tumor, lymph node or distant metastasis). Intra-and inter-observer discrepancies were also studied using double-blind evaluation and concordance analyses based on the weighted κ coefficient. The results demonstrated a significant association between PD-L1 expression and sample location (P=0.005), histological type (P=0.026), total number of mutations (P=0.004) and KRAS proto-oncogene, GTPase mutations (P=0.024). In addition, sampling type did not influence PD-L1 expression. The inter-and intra-observer discrepancies were 15% and between 16 and 17.5%, respectively. The present study confirmed that evaluation of PD-L1 expression by IHC can be performed on all types of samples. In addition, the results from the current study highlighted the heterogeneity of PD-L1 expression among the different types of sample location. In complex cases, a second evaluation of PD-L1 expression by IHC would be performed due to intraand inter-observer discrepancies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.