High-density electroencephalography (hdEEG) is an emerging brain imaging technique that can be used to investigate fast dynamics of electrical activity in the healthy and the diseased human brain. Its applications are however currently limited by a number of methodological issues, among which the difficulty in obtaining accurate source localizations. In particular, these issues have so far prevented EEG studies from reporting brain networks similar to those previously detected by functional magnetic resonance imaging (fMRI). Here, we report for the first time a robust detection of brain networks from resting state (256-channel) hdEEG recordings. Specifically, we obtained 14 networks previously described in fMRI studies by means of realistic 12-layer head models and exact low-resolution brain electromagnetic tomography (eLORETA) source localization, together with independent component analysis (ICA) for functional connectivity analysis. Our analyses revealed three important methodological aspects. First, brain network reconstruction can be improved by performing source localization using the gray matter as source space, instead of the whole brain. Second, conducting EEG connectivity analyses in individual space rather than on concatenated datasets may be preferable, as it permits to incorporate realistic information on head modeling and electrode positioning. Third, the use of a wide frequency band leads to an unbiased and generally accurate reconstruction of several network maps, whereas filtering data in a narrow frequency band may enhance the detection of specific networks and penalize that of others. We hope that our methodological work will contribute to rise of hdEEG as a powerful tool for brain research. Hum Brain Mapp 38:4631-4643, 2017. © 2017 Wiley Periodicals, Inc.
Brain activity is complex; a reflection of its structural and functional organization. Among other measures of complexity, the fractal dimension is emerging as being sensitive to neuronal damage secondary to neurological and psychiatric diseases. Here, we calculated Higuchi’s fractal dimension (HFD) in resting-state eyes-closed electroencephalography (EEG) recordings from 41 healthy controls (age: 20–89 years) and 67 Alzheimer’s Disease (AD) patients (age: 50–88 years), to investigate whether HFD is sensitive to brain activity changes typical in healthy aging and in AD. Additionally, we considered whether AD-accelerating effects of the copper fraction not bound to ceruloplasmin (also called “free” copper) are reflected in HFD fluctuations. The HFD measure showed an inverted U-shaped relationship with age in healthy people (R2 = .575, p < .001). Onset of HFD decline appeared around the age of 60, and was most evident in central-parietal regions. In this region, HFD decreased with aging stronger in the right than in the left hemisphere (p = .006). AD patients demonstrated reduced HFD compared to age- and education-matched healthy controls, especially in temporal-occipital regions. This was associated with decreasing cognitive status as assessed by mini-mental state examination, and with higher levels of non-ceruloplasmin copper. Taken together, our findings show that resting-state EEG complexity increases from youth to maturity and declines in healthy, aging individuals. In AD, brain activity complexity is further reduced in correlation with cognitive impairment. In addition, elevated levels of non-ceruloplasmin copper appear to accelerate the reduction of neural activity complexity. Overall, HDF appears to be a proper indicator for monitoring EEG-derived brain activity complexity in healthy and pathological aging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.