We introduce and study the notion of representation up to homotopy of a Lie algebroid, paying special attention to examples. We use representations up to homotopy to define the adjoint representation of a Lie algebroid and show that the resulting cohomology controls the deformations of the structure. The Weil algebra of a Lie algebroid is defined and shown to coincide with Kalkman's BRST model for equivariant cohomology in the case of group actions. The relation of this algebra with the integration of Poisson and Dirac structures is explained in [Arias Abad, Crainic, Ann. Inst. Fourier].
We use Chen's iterated integrals to integrate representations up to homotopy. That is, we construct an functor from the representations up to homotopy of a Lie algebroid A to those of its infinity groupoid. This construction extends the usual integration of representations in Lie theory. We discuss several examples including Lie algebras and Poisson manifolds. The construction is based on an version of de Rham's theorem due to Gugenheim [15]. The integration procedure we explain here amounts to extending the construction of parallel transport for superconnections, introduced by Igusa [17] and Block-Smith [6], to the case of certain differential graded manifolds
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.