Cassava, Manihot esculenta Crantz, has been positioned as one of the most promising crops world-wide representing the staple security for more than one billion people mainly in poor countries. Cassava production is constantly threatened by several diseases, including cassava bacterial blight (CBB) caused by Xanthomonas axonopodis pv. manihotis (Xam), it is the most destructive disease causing heavy yield losses. Here, we report the detection and localization on the genetic map of cassava QTL (Quantitative Trait Loci) conferring resistance to CBB. An F1 mapping population of 117 full sibs was tested for resistance to two Xam strains (Xam318 and Xam681) at two locations in Colombia: La Vega, Cundinamarca and Arauca. The evaluation was conducted in rainy and dry seasons and additional tests were carried out under controlled greenhouse conditions. The phenotypic evaluation of the response to Xam revealed continuous variation. Based on composite interval mapping analysis, 5 strain-specific QTL for resistance to Xam explaining between 15.8 and 22.1% of phenotypic variance, were detected and localized on a high resolution SNP-based genetic map of cassava. Four of them show stability among the two evaluated seasons. Genotype by environment analysis detected three QTL by environment interactions and the broad sense heritability for Xam318 and Xam681 were 20 and 53%, respectively. DNA sequence analysis of the QTL intervals revealed 29 candidate defense-related genes (CDRGs), and two of them contain domains related to plant immunity proteins, such as NB-ARC-LRR and WRKY.
The overexpression of RXam1 leads to a reduction in bacterial growth of XamCIO136, suggesting that RXam1 might be implicated in strain-specific resistance. Cassava bacterial blight (CBB) caused by Xanthomonas axonopodis pv. manihotis (Xam) is a prevalent disease in all regions, where cassava is cultivated. CBB is a foliar and vascular disease usually controlled through host resistance. Previous studies have found QTLs explaining resistance to several Xam strains. Interestingly, one QTL called XM5 that explained 13% of resistance to XamCIO136 was associated with a similar fragment of the rice Xa21-resistance gene called PCR250. In this study, we aimed to further identify and characterize this fragment and its role in resistance to CBB. Screening and hybridization of a BAC library using the molecular marker PCR250 as a probe led to the identification of a receptor-like kinase similar to Xa21 and were called RXam1 (Resistance to Xam 1). Here, we report the functional characterization of susceptible cassava plants overexpressing RXam1. Our results indicated that the overexpression of RXam1 leads to a reduction in bacterial growth of XamCIO136. This suggests that RXAM1 might be implicated in strain-specific resistance to XamCIO136.
One of the most challenging questions in plant breeding and molecular plant pathology research is what are the genetic and molecular bases of quantitative disease resistance (QDR)?. The scarce knowledge of how this type of resistance works has hindered plant breeders to fully take advantage of it. To overcome these obstacles new methodologies for the study of quantitative traits have been developed. Approaches such as genetic mapping, identification of quantitative trait loci (QTL) and association mapping, including candidate gene approach and genome wide association studies, have been historically undertaken to dissect quantitative traits and therefore to study QDR. Additionally, great advances in quantitative phenotypic data collection have been provided to improve these analyses. Recently, genes associated to QDR have been cloned, leading to new hypothesis concerning the molecular bases of this type of resistance. In this review we present the more recent advances about QDR and corresponding application, which have allowed postulating new ideas that can help to construct new QDR models. Some of the hypotheses presented here as possible explanations for QDR are related to the expression level and alternative splicing of some defense-related genes expression, the action of "weak alleles" of R genes, the presence of allelic variants in genes involved in the defense response and a central role of kinases or pseudokinases. With the information recapitulated in this review it is possible to conclude that the conceptual distinction between qualitative and quantitative resistance may be questioned since both share important components. Keywords: breeding, complex traits, genome, gene expression, plant immunity, quantitative disease resistance (QDR), quantitative trait loci (QTL). RESUMENUna de las preguntas más desafiantes del fitomejoramiento y de la fitopatología molecular es ¿cuáles son las bases genéticas y moleculares de la resistencia cuantitativa a enfermedades?. El escaso conocimiento de cómo este tipo de resistencia funciona ha obstaculizado que los fitomejoradores la aprovecharlo plenamente. Para superar estos obstáculos se han desarrollado nuevas metodologías para el estudio de rasgos cuantitativos. Los enfoques como el mapeo genético, la identificación de loci de rasgos cuantitativos (QTL) y el mapeo por asociaciones, incluyendo el enfoque de genes candidatos y los estudios de asociación amplia del genoma, se han llevado a cabo históricamente para describir rasgos cuantitativos y por lo tanto para estudiar QDR. Además, se han proporcionado grandes avances en la obtención de datos fenotípicos cuantitativos para mejorar estos análisis. Recientemente, algunos genes asociados a QDR han sido clonados, lo que conduce a nuevas hipótesis sobre las bases moleculares de este tipo de resistencia. En esta revisión presentamos los avances más recientes sobre QDR y la correspondiente aplicación, que han permitido postular nuevas ideas que pueden ayudar a construir nuevos modelos. Algunas de las hipótesis presen...
Algunos Bacillus spp. promotores de crecimiento vegetal son microorganismos reconocidos como agentes de control biológico que forman una estructura de resistencia denominada endospora, que les permite sobrevivir en ambientes hostiles y estar en casi todos los agroecosistemas. Estos microorganismos han sido reportados como alternativa al uso de agroquímicos. Sus mecanismos de acción se pueden dividir en: producción de compuestos antimicrobianos, como son péptidos de síntesis no ribosomal (NRPs) y policétidos (PKs); producción de hormonas, capacidad de colonización, formación de biopelículas y competencia por espacio y nutrientes; síntesis de enzimas líticas como quitinasas, glucanasas, protesasas y acil homoserin lactonasas (AHSL); producción de compuestos orgánicos volátiles (VOCs); e inducción de resistencia sistémica (ISR). Estos mecanismos han sido reportados en la literatura en diversos estudios, principalmente llevados a cabo a nivel in vitro. Sin embargo, son pocos los estudios que contemplan la interacción dentro del sistema tritrófico: planta – microorganismos patógenos – Bacillus sp. (agente biocontrolador), a nivel in vivo. Es importante destacar que la actividad biocontroladora de los Bacillus es diferente cuando se estudia bajo condiciones de laboratorio, las cuales están sesgadas para lograr la máxima expresión de los mecanismos de acción. Por otra parte, a nivel in vivo, la interacción con la planta y el patógeno juegan un papel fundamental en la expresión de dichos mecanismos de acción, siendo esta más cercana a la situación real de campo. Esta revisión se centra en los mecanismos de acción de los Bacillus promotores de crecimiento vegetal, expresados bajo la interacción con la planta y el patógeno.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.