BACKGROUND
CD11b/CD18 is a key adhesion receptor that mediates leukocyte adhesion, migration and immune functions. We recently identified novel compounds, leukadherins, that allosterically enhance CD11b/CD18-dependent cell adhesion and reduce inflammation in vivo, suggesting integrin activation to be a novel mechanism of action for the development of anti-inflammatory therapeutics. Since a number of well-characterized anti-CD11b/CD18 activating antibodies are currently available, we wondered if such biological agonists could also become therapeutic leads following this mechanism of action.
METHODS
We compared the two types of agonists using in vitro cell adhesion and wound-healing assays and using animal model systems. We also studied effects of the two types of agonists on outside-in signaling in treated cells.
RESULTS
Both types of agonists similarly enhanced integrin-mediated cell adhesion and decreased cell migration. However, unlike leukadherins, the activating antibodies produced significant CD11b/CD18 macro clustering and induced phosphorylation of key proteins involved in outside-in signaling. Studies using conformation reporter antibodies showed that leukadherins did not induce global conformational changes in CD11b/CD18 explaining the reason behind their lack of ligand-mimetic outside-in signaling. In vivo, leukadherins reduced vascular injury in a dose-dependent fashion, but, surprisingly, the anti-CD11b activating antibody ED7 was ineffective.
CONCLUSIONS
Our results suggest that small molecule allosteric agonists of CD11b/CD18 have clear advantages over the biologic activating antibodies and provide a mechanistic basis for the difference.
GENERAL SIGNIFICANCE
CD11b/CD18 activation represents a novel strategy for reducing inflammatory injury. Our study establishes small molecule leukadherins as preferred agonists over activating antibodies for future development as novel anti-inflammatory therapeutics.
SynopsisThe present study dissects the mechanisms underlying the rapid onset of apoptosis that precedes post injury vascular remodelling. Using the rat balloon injury model, we demonstrated that a significant number of arterial vascular smooth muscle cells (VSMC) undergo apoptosis at 90 min after the procedure. This apoptotic wave caused significant loss in media cellularity (>90 %) over the next 3 h and was accompanied by a marked accumulation of oxidative stress by-products in the vascular wall. Early apoptotic VSMC were rich in p38 mitogen-activated protein kinase (MAPK) and the transcription factor c-Jun and secreted IL-6 and GRO/KC into the milieu as determined using multiplex bead assays. Neointima thickness increased steadily starting on day 3 as a result of pronounced repopulation of the media. A second apoptotic wave that was detected at 14 days after injury affected mostly the neointima and was insufficient to control hyperplasia. Suppression of reactive oxygen species (ROS) production using either the NAD(P)H oxidase inhibitor VAS2870 or pegylated superoxide dismutase (PEG-SOD) significantly decreased the number of apoptotic cells during the first apoptotic wave and showed a trend towards reduction in the neointima-to-media thickness ratio at 30 days post injury. These results indicate that oxidative stress in response to injury induces early-onset apoptosis of VSMC through the activation of redox-sensible MAPK pro-apoptotic pathways. This remodelling process leads to the local accumulation of inflammatory cytokines and repopulation of the media, which ultimately contribute to neointima formation.
Cardiac hypertrophy is a relatively common complication seen in patients with advanced chronic kidney disease (CKD) and end-stage renal disease (ESRD). Moreover, cardiac hypertrophy is even more frequently seen in patients with ESRD who have an arteriovenous (AV) access. There has been substantial evidence pertaining to the effects of AV access creation on the heart structure and function. Similarly, there is increasing evidence on the effects of AV access closure, flow reduction, transplantation, and immunosuppressive medication on both endpoints. In this review, we present the evidence available in the literature on these topics and open the dialog for further research in this interesting field.
Neointimal hyperplasia is the leading cause of restenosis after endovascular interventions. It is characterized by the accumulation of myofibroblast-like cells and extracellular matrix in the innermost layer of the wall and is exacerbated by inflammation. Monocytes from either young or aged rats were applied perivascularly to injured vascular walls of young recipient animals. Monocytes from aged rats, but not young donors, increased neointima thickness. Accordingly, the gene expression profiles of CD11b+ monocytes from aged rats showed significant up-regulation of genes involved in cellular adhesion, lipid degradation, cytotoxicity, differentiation, and inflammation. These included cadherin 13 (Cdh13), colony stimulating factor 1 (Csf1), chemokine C-X-C motif ligand 1 (Cxcl1), endothelial cell-selective adhesion molecule (Esam), and interferon gamma (Ifng). In conclusion, our results suggest that the increased inflammatory and adhesive profile of monocytes contributes to pathological wall remodeling in aged-related vascular diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.