Extreme reduction in cellular water content leads to desiccation, which, if persistent, affects the physiology of organisms, mainly through oxidative stress. Some organisms are highly tolerant to desiccation, including resurrection plants and certain intertidal seaweeds. One such species is Pyropia orbicularis, a rhodophycean that colonizes upper intertidal zones along the Chilean coast. Despite long, daily periods of air exposure due to tides, this alga is highly tolerant to desiccation. The present study examined the proteome of P. orbicularis by 2DE and LC-MS/MS analyses to determine the proteins associated with desiccation tolerance (DT). The results showed that, under natural conditions, there were significant changes in the protein profile during low tide as compared to naturally hydrated plants at high tide. These changes were mainly in newly appeared proteins spots such as chaperones, monodehydroascorbate reductase, and manganese superoxide dismutase, among others. Previously undescribed proteins under desiccation conditions included phycobiliproteins, glyoxalase I, and phosphomannomutase. These changes evidenced that several physiological responses involved in DT are activated during low tide, including decreased photosynthetic activity, increased antioxidant capacity, and the preservation of cell physiology by regulating water content, cell wall structure, and cell volume. Similar responses have been observed in resurrection plants and bryophytes exposed to desiccation. Therefore, the coordinated activation of different desiccation tolerance pathways in P. orbicularis could explain the successful biological performance of this seaweed in the upper intertidal rocky zones.
CRISPR/Cas9 system has been widely applied in many plant species to induce mutations in the genome for studying gene function and improving crops. However, to our knowledge, there is no report of CRISPR/Cas9-mediated genome editing in melon (Cucumis melo). In our study, phytoene desaturase gene of melon (CmPDS) was selected as target for the CRISPR/Cas9 system with two designed gRNAs, targeting exons 1 and 2. A construct (pHSE-CmPDS) carrying both gRNAs and the Cas9 protein was delivered by PEG-mediated transformation in protoplasts. Mutations were detected in protoplasts for both gRNAs. Subsequently, Agrobacterium-mediated transformation of cotyledonary explants was carried out, and fully albino and chimeric albino plants were successfully regenerated. A regeneration efficiency of 71% of transformed plants was achieved from cotyledonary explants, a 39% of genetic transformed plants were successful gene edited, and finally, a 42–45% of mutation rate was detected by Sanger analysis. In melon protoplasts and plants most mutations were substitutions (91%), followed by insertions (7%) and deletions (2%). We set up a CRISPR/Cas9-mediated genome editing protocol which is efficient and feasible in melon, generating multi-allelic mutations in both genomic target sites of the CmPDS gene showing an albino phenotype easily detectable after only few weeks after Agrobacterium-mediated transformation.
The transcriptional modulation of desiccation tolerance factors in P. orbicularis explains its successful recuperation after water deficit. Differential responses to air exposure clarify seaweed distribution along intertidal rocky zones. Desiccation-tolerant seaweed species, such as Pyropia orbicularis, can tolerate near 96% water loss during air exposure. To understand the phenotypic plasticity of P. orbicularis to desiccation, several tolerance factors were assessed by RT-qPCR, Western-blot analysis, and enzymatic assays during the natural desiccation-rehydration cycle. Comparative enzymatic analyses were used to evidence differential responses between P. orbicularis and desiccation-sensitive species. The results showed that during desiccation, the relative mRNA levels of genes associated with basal metabolism [trehalose phosphate synthase (tps) and pyruvate dehydrogenase (pdh)] were overexpressed in P. orbicularis. Transcript levels related to antioxidant metabolism [peroxiredoxin (prx); thioredoxin (trx); catalase (cat); lipoxygenase (lox); ferredoxin (fnr); glutathione S-transferase (gst)], cellular detoxification [ABC transporter (abc) and ubiquitin (ubq)], and signal transduction [calmodulin (cam)] increased approximately 15- to 20-fold, with the majority returning to basal levels during the final hours of rehydration. In contrast, actin (act) and transcription factor 1 (tf1) transcripts were down-regulated. ABC transporter protein levels increased in P. orbicularis during desiccation, whereas PRX transcripts decreased. The antioxidant enzymes showed higher specific activity in P. orbicularis under desiccation, and sensitive species exhibited enzymatic inactivation and scarce ABC and PRX protein detection following prolonged desiccation. In conclusion, the reported findings contribute towards understanding the ecological distribution of intertidal seaweeds at the molecular and functional levels.
ABSTRACT. In rocky shores, desiccation is triggered by daily tide changes, and experimental evidence suggests that local distribution of algal species across the intertidal rocky zone is related to their capacity to tolerate desiccation. In this context, the permanence of Pyropia columbina in the high intertidal rocky zone is explained by its exceptional physiological tolerance to desiccation. This study explored the metabolic pathways involved in tolerance to desiccation in the Chilean P. columbina, by characterizing its transcriptome under contrasting conditions of hydration. We obtained 1,410 ESTs from two subtracted cDNA libraries in naturally hydrated and desiccated fronds. Results indicate that transcriptome from both libraries contain transcripts from diverse metabolic pathways related to tolerance. Among the transcripts differentially expressed, 15% appears involved in protein synthesis, processing and degradation, 14.4% are related to photosynthesis and chloroplast, 13.1% to respiration and mitochondrial function (NADH dehydrogenase and cytochrome c oxidase proteins), 10.6% to cell wall metabolism, and 7.5% are involved in antioxidant activity, chaperone and defense factors (catalase, thioredoxin, heat shock proteins, cytochrome P450). Both libraries highlight the presence of genes/proteins never described before in algae. This information provides the first molecular work regarding desiccation tolerance in P. columbina, and helps, to some extent, explaining the classical patterns of ecological distribution described for algae across the intertidal zone. Keywords: Pyropia, desiccation stress, ESTs, seaweeds, transcriptomics, proteins. Expresión diferencial de genes en Pyropia columbina (Bangiales, Rhodophyta)bajo hidratación y desecación natural RESUMEN. En zonas rocosas costeras, la desecación es gatillada por cambios diarios en los niveles de marea, y la evidencia experimental indica que la distribución de las algas en la zona intermareal está relacionada con su capacidad para tolerar la desecación. En este contexto, la presencia de Pyropia columbina en la zona alta del intermareal se explica por su excepcional tolerancia fisiológica a la desecación. Este estudio explora las vías metabólicas involucradas en la tolerancia a la desecación en P. columbina, a través de la caracterización de su transcriptoma bajo condiciones de hidratación contrastantes. Se obtuvo 1,410 ESTs provenientes de dos librerías de substracción de cDNA de frondas naturalmente hidratadas y desecadas. Los transcriptomas de ambas librerías contienen transcritos de diversas rutas metabólicas relacionadas a la tolerancia. Entre los transcritos expresados 15% están involucrados en la síntesis de proteínas, su procesamiento y degradación, 14,4% asociados a fotosíntesis y cloroplasto, 13,1% a respiración y función mitocondrial, 10,6% al metabolismo de la pared celular y 7,5% a la actividad antioxidante, proteínas chaperonas y factores de defensa (catalasa, tiorredoxina, proteínas de shock térmico, citocromo P450). En ambas librerías se de...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.